CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Impact of an optical coherence tomography guided approach in acute coronary syndromes: A propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes Optical Coherence Tomography-Guided Percutaneous Coronary Intervention in ST-Segment-Elevation Myocardial Infarction: A Prospective Propensity-Matched Cohort of the Thrombectomy Versus Percutaneous Coronary Intervention Alone Trial Intravascular optical coherence tomography Levosimendan Improves Hemodynamics and Exercise Tolerance in PH-HFpEF: Results of the Randomized Placebo-Controlled HELP Trial Chronic thromboembolic pulmonary hypertension Immunotherapy of Endothelin-1 Receptor Type A for Pulmonary Arterial Hypertension Validation of bifurcation DEFINITION criteria and comparison of stenting strategies in true left main bifurcation lesions Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis Relationship Between Coronary Artery Calcium and Atherosclerosis Progression Among Patients With Suspected Coronary Artery Disease

Review Article2021 Feb, 14 (3) 237–246

JOURNAL:JACC: Cardiovascular Interventions Article Link

Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine

S Biscaglia , B Uretsky , E Barbato , C Collet et al. Keywords: intracoronary physiology; post PCI; functional assessment

ABSTRACT

Intracoronary physiology is routinely used in setting the indication for percutaneous coronary intervention (PCI) but seldom in assessing procedural results. This attitude is increasingly challenged by accumulated evidence demonstrating the value of post-PCI functional assessment in predicting long-term patient outcomes. Besides fractional flow reserve, a number of new indexes recently incorporated to clinical practice, including nonhyperemic pressure and functional angiographic indexes, provide new opportunities for the physiological assessment of PCI results. Largely, the benefit of these tools is derived from longitudinal analysis of the treated vessel, which allows precise identification of the vessel segment accounting for a suboptimal functional result and enabling operators to perform accurate PCI optimization. In this document the authors review available evidence supporting why physiological assessment should be extended to immediate post-PCI with the aim of improving patient outcomes. A step-by-step guide on how available physiological tools can be used for such purpose is provided.