CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD FFR-guided multivessel stenting reduces urgent revascularization compared with infarct-related artery only stenting in ST-elevation myocardial infarction: A meta-analysis of randomized controlled trials Lack of Association Between Heart Failure and Incident Cancer Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients Long-term Survival following Multivessel Revascularization in Patients with Diabetes (FREEDOM Follow-On Study)

Review Article2021 Feb, 14 (3) 237–246

JOURNAL:JACC: Cardiovascular Interventions Article Link

Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine

S Biscaglia , B Uretsky , E Barbato , C Collet et al. Keywords: intracoronary physiology; post PCI; functional assessment

ABSTRACT

Intracoronary physiology is routinely used in setting the indication for percutaneous coronary intervention (PCI) but seldom in assessing procedural results. This attitude is increasingly challenged by accumulated evidence demonstrating the value of post-PCI functional assessment in predicting long-term patient outcomes. Besides fractional flow reserve, a number of new indexes recently incorporated to clinical practice, including nonhyperemic pressure and functional angiographic indexes, provide new opportunities for the physiological assessment of PCI results. Largely, the benefit of these tools is derived from longitudinal analysis of the treated vessel, which allows precise identification of the vessel segment accounting for a suboptimal functional result and enabling operators to perform accurate PCI optimization. In this document the authors review available evidence supporting why physiological assessment should be extended to immediate post-PCI with the aim of improving patient outcomes. A step-by-step guide on how available physiological tools can be used for such purpose is provided.