CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Society of cardiac angiography and interventions: suggested management of the no-reflow phenomenon in the cardiac catheterization laboratory Considerations for Single-Measurement Risk-Stratification Strategies for Myocardial Infarction Using Cardiac Troponin Assays Macrophage MST1/2 Disruption Impairs Post-Infarction Cardiac Repair via LTB4 A prospective natural-history study of coronary atherosclerosis Impact of lesion complexity on peri-procedural adverse events and the benefit of potent intravenous platelet adenosine diphosphate receptor inhibition after percutaneous coronary intervention: core laboratory analysis from 10 854 patients from the CHAMPION PHOENIX trial Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data Complete Revascularization Versus Culprit Lesion Only in Patients With ST-Segment Elevation Myocardial Infarction and Multivessel Disease: A DANAMI-3-PRIMULTI Cardiac Magnetic Resonance Substudy Myocardial Infarction in Young Women Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review

Review Article2021 Feb, 14 (3) 237–246

JOURNAL:JACC: Cardiovascular Interventions Article Link

Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine

S Biscaglia , B Uretsky , E Barbato , C Collet et al. Keywords: intracoronary physiology; post PCI; functional assessment

ABSTRACT

Intracoronary physiology is routinely used in setting the indication for percutaneous coronary intervention (PCI) but seldom in assessing procedural results. This attitude is increasingly challenged by accumulated evidence demonstrating the value of post-PCI functional assessment in predicting long-term patient outcomes. Besides fractional flow reserve, a number of new indexes recently incorporated to clinical practice, including nonhyperemic pressure and functional angiographic indexes, provide new opportunities for the physiological assessment of PCI results. Largely, the benefit of these tools is derived from longitudinal analysis of the treated vessel, which allows precise identification of the vessel segment accounting for a suboptimal functional result and enabling operators to perform accurate PCI optimization. In this document the authors review available evidence supporting why physiological assessment should be extended to immediate post-PCI with the aim of improving patient outcomes. A step-by-step guide on how available physiological tools can be used for such purpose is provided.