CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Joint consensus on the use of OCT in coronary bifurcation lesions by the European and Japanese bifurcation clubs Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity Coronary Flow Reserve in the Instantaneous Wave-Free Ratio/Fractional Flow Reserve Era: Too Valuable to Be Neglected A new optical coherence tomography-based calcium scoring system to predict stent underexpansion The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Myocardial Blood Flow and Coronary Flow Reserve During 3 Years Following Bioresorbable Vascular Scaffold Versus Metallic Drug-Eluting Stent Implantation: The VANISH Trial Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics Therapeutic efficacy of paclitaxel-coated balloon for de novo coronary lesions with diameters larger than 2.8 mm Coronary fractional flow reserve in bifurcation stenoses: what have we learned?

Review Article2021 Feb, 14 (3) 237–246

JOURNAL:JACC: Cardiovascular Interventions Article Link

Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine

S Biscaglia , B Uretsky , E Barbato , C Collet et al. Keywords: intracoronary physiology; post PCI; functional assessment

ABSTRACT

Intracoronary physiology is routinely used in setting the indication for percutaneous coronary intervention (PCI) but seldom in assessing procedural results. This attitude is increasingly challenged by accumulated evidence demonstrating the value of post-PCI functional assessment in predicting long-term patient outcomes. Besides fractional flow reserve, a number of new indexes recently incorporated to clinical practice, including nonhyperemic pressure and functional angiographic indexes, provide new opportunities for the physiological assessment of PCI results. Largely, the benefit of these tools is derived from longitudinal analysis of the treated vessel, which allows precise identification of the vessel segment accounting for a suboptimal functional result and enabling operators to perform accurate PCI optimization. In this document the authors review available evidence supporting why physiological assessment should be extended to immediate post-PCI with the aim of improving patient outcomes. A step-by-step guide on how available physiological tools can be used for such purpose is provided.