CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Systemic microvascular dysfunction in microvascular and vasospastic angina Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure With Preserved Ejection Fraction Nocturnal thoracic volume overload and post-discharge outcomes in patients hospitalized for acute heart failure Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis Plasma Ionized Calcium and Risk of Cardiovascular Disease: 106 774 Individuals from the Copenhagen General Population Study Extreme Levels of Air Pollution Associated With Changes in Biomarkers of Atherosclerotic Plaque Vulnerability and Thrombogenicity in Healthy Adults Association of Statin Use With All-Cause and Cardiovascular Mortality in US Veterans 75 Years and Older Burden of Cardiovascular Diseases in China, 1990-2016: Findings From the 2016 Global Burden of Disease Study Coronary Access After TAVR Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis

Review Article2021 Feb, 14 (3) 237–246

JOURNAL:JACC: Cardiovascular Interventions Article Link

Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine

S Biscaglia , B Uretsky , E Barbato , C Collet et al. Keywords: intracoronary physiology; post PCI; functional assessment

ABSTRACT

Intracoronary physiology is routinely used in setting the indication for percutaneous coronary intervention (PCI) but seldom in assessing procedural results. This attitude is increasingly challenged by accumulated evidence demonstrating the value of post-PCI functional assessment in predicting long-term patient outcomes. Besides fractional flow reserve, a number of new indexes recently incorporated to clinical practice, including nonhyperemic pressure and functional angiographic indexes, provide new opportunities for the physiological assessment of PCI results. Largely, the benefit of these tools is derived from longitudinal analysis of the treated vessel, which allows precise identification of the vessel segment accounting for a suboptimal functional result and enabling operators to perform accurate PCI optimization. In this document the authors review available evidence supporting why physiological assessment should be extended to immediate post-PCI with the aim of improving patient outcomes. A step-by-step guide on how available physiological tools can be used for such purpose is provided.