CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Baseline Characteristics and Risk Profiles of Participants in the ISCHEMIA Randomized Clinical Trial Criteria for Iron Deficiency in Patients With Heart Failure High-Risk Coronary Plaque Regression After Intensive Lifestyle Intervention in Nonbstructive Coronary Disease: A Randomized Study Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone Proteomics to Improve Phenotyping in Obese Patients with Heart Failure with Preserved Ejection Fraction Comparison of 1-Year Pre- And Post-Transcatheter Aortic Valve Replacement Hospitalization Rates: A Population-Based Cohort Study 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Genotyping to Guide Clopidogrel Treatment: An In-Depth Analysis of the TAILOR-PCI Trial Coronary Access After TAVR With a Self-Expanding Bioprosthesis: Insights From Computed Tomography 2021 ACC/AHA Key Data Elements and Definitions for Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure)

Original Research2021 Mar 22.

JOURNAL:J Proteome Res. Article Link

Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis

WP Liu, PF Guo, T Dai Keywords: diabetes coronary heart disease metabolomics metabolism

ABSTRACT

Comprehensive understanding of plasma metabotype of diabetes mellitus (DM), coronary heart disease (CHD), and especially diabetes mellitus with coronary heart disease (CHDDM) is still lacking. In this work, the plasma metabolic differences and links of DM, CHD, and CHDDM patients were investigated by the strategy of comparative metabolomics based on 1H NMR spectroscopy combined with network analysis for revealing their metabolic differences. A total of 17 metabolites are related to three diseases, among which valine, alanine, leucine, isoleucine, and N-acetyl-glycoprotein are positively correlated with CHD and CHDDM (odds ratios (OR) > 1). The trimethylamine oxide, glycerol, lactose, indoleacetate, and scyllo-inositol are closely related to the development of DM to CHDDM (OR > 1), and indoleactate (OR: 1.06, 95% confidence interval (CI): 1.01–1.12) and lactose (OR: 2.46, 95% CI: 1.67–3.25) are particularly prominent in CHDDM. We identified three multi-biomarkers types that were significantly associated with glycosylated hemoglobin (HbA1C) at baseline. All diseases demonstrated dysregulated glycolysis/gluconeogenesis and amino acid biosynthesis pathway. In addition, enrichment in tryptophan metabolism observed in CHDDM, enrichment in inositol phosphate metabolism observed in DM, and the metabolites related to microbiota metabolism were dysregulated in both DM and CHDDM. The comparative metabolomics strategy of multi-diseases offers a new perspective in disease-specific markers and pathogenic pathways.