CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions: Endorsed by the Chinese Society of Cardiology Histopathological validation of optical coherence tomography findings of the coronary arteries Technical aspects of the culotte technique Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study Physiological Stratification of Patients With Angina Due to Coronary Microvascular Dysfunction Prospective, large-scale multicenter trial for the use of drug-coated balloons in coronary lesions: The DCB-only All-Comers Registry Incidence of Adverse Events at 3 Months Versus at 12 Months After Dual Antiplatelet Therapy Cessation in Patients Treated With Thin Stents With Unprotected Left Main or Coronary Bifurcations A Randomized Trial Evaluating Online 3-Dimensional Optical Frequency Domain Imaging-Guided Percutaneous Coronary Intervention in Bifurcation Lesions Double-Kiss-Crush Bifurcation Stenting: Step-by-Step Troubleshooting

Original Research2021 Mar 22.

JOURNAL:J Proteome Res. Article Link

Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis

WP Liu, PF Guo, T Dai Keywords: diabetes coronary heart disease metabolomics metabolism

ABSTRACT

Comprehensive understanding of plasma metabotype of diabetes mellitus (DM), coronary heart disease (CHD), and especially diabetes mellitus with coronary heart disease (CHDDM) is still lacking. In this work, the plasma metabolic differences and links of DM, CHD, and CHDDM patients were investigated by the strategy of comparative metabolomics based on 1H NMR spectroscopy combined with network analysis for revealing their metabolic differences. A total of 17 metabolites are related to three diseases, among which valine, alanine, leucine, isoleucine, and N-acetyl-glycoprotein are positively correlated with CHD and CHDDM (odds ratios (OR) > 1). The trimethylamine oxide, glycerol, lactose, indoleacetate, and scyllo-inositol are closely related to the development of DM to CHDDM (OR > 1), and indoleactate (OR: 1.06, 95% confidence interval (CI): 1.01–1.12) and lactose (OR: 2.46, 95% CI: 1.67–3.25) are particularly prominent in CHDDM. We identified three multi-biomarkers types that were significantly associated with glycosylated hemoglobin (HbA1C) at baseline. All diseases demonstrated dysregulated glycolysis/gluconeogenesis and amino acid biosynthesis pathway. In addition, enrichment in tryptophan metabolism observed in CHDDM, enrichment in inositol phosphate metabolism observed in DM, and the metabolites related to microbiota metabolism were dysregulated in both DM and CHDDM. The comparative metabolomics strategy of multi-diseases offers a new perspective in disease-specific markers and pathogenic pathways.