CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) Restenosis, Stent Thrombosis, and Bleeding Complications - Navigating Between Scylla and Charybdis Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series Translational Perspective on Epigenetics in Cardiovascular Disease Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review Impact of Abnormal Coronary Reactivity on Long-Term Clinical Outcomes in Women Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative New AHA/ACC/HRS Guidance on Sudden Cardiac Death Prevention Patient Characteristics Associated With Antianginal Medication Escalation and De-Escalation Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN CTO Registry

Original Research2021 Mar 22.

JOURNAL:J Proteome Res. Article Link

Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis

WP Liu, PF Guo, T Dai Keywords: diabetes coronary heart disease metabolomics metabolism

ABSTRACT

Comprehensive understanding of plasma metabotype of diabetes mellitus (DM), coronary heart disease (CHD), and especially diabetes mellitus with coronary heart disease (CHDDM) is still lacking. In this work, the plasma metabolic differences and links of DM, CHD, and CHDDM patients were investigated by the strategy of comparative metabolomics based on 1H NMR spectroscopy combined with network analysis for revealing their metabolic differences. A total of 17 metabolites are related to three diseases, among which valine, alanine, leucine, isoleucine, and N-acetyl-glycoprotein are positively correlated with CHD and CHDDM (odds ratios (OR) > 1). The trimethylamine oxide, glycerol, lactose, indoleacetate, and scyllo-inositol are closely related to the development of DM to CHDDM (OR > 1), and indoleactate (OR: 1.06, 95% confidence interval (CI): 1.01–1.12) and lactose (OR: 2.46, 95% CI: 1.67–3.25) are particularly prominent in CHDDM. We identified three multi-biomarkers types that were significantly associated with glycosylated hemoglobin (HbA1C) at baseline. All diseases demonstrated dysregulated glycolysis/gluconeogenesis and amino acid biosynthesis pathway. In addition, enrichment in tryptophan metabolism observed in CHDDM, enrichment in inositol phosphate metabolism observed in DM, and the metabolites related to microbiota metabolism were dysregulated in both DM and CHDDM. The comparative metabolomics strategy of multi-diseases offers a new perspective in disease-specific markers and pathogenic pathways.