CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Role of intravascular ultrasound in patients with acute myocardial infarction undergoing percutaneous coronary intervention Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study Association of Effective Regurgitation Orifice Area to Left Ventricular End-Diastolic Volume Ratio With Transcatheter Mitral Valve Repair OutcomesA Secondary Analysis of the COAPT Trial 3-Year Outcomes of the ULTIMATE Trial Comparing Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement

Original Research2021; 384:2014-2027

JOURNAL:N Engl J Med. Article Link

A Novel Circulating MicroRNA for the Detection of Acute Myocarditis

R Blanco-Domínguez, R Sánchez-Díaz, H de la Fuente et al. Keywords: acute myocarditis; AMI; differential diagnosis

ABSTRACT

BACKGROUND - The diagnosis of acute myocarditis typically requires either endomyocardial biopsy (which is invasive) or cardiovascular magnetic resonance imaging (which is not universally available). Additional approaches to diagnosis are desirable. We sought to identify a novel microRNA for the diagnosis of acute myocarditis.


METHODS - To identify a microRNA specific for myocarditis, we performed microRNA microarray analyses and quantitative polymerase-chain-reaction (qPCR) assays in sorted CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis or myocardial infarction in mice. We also performed qPCR in samples from coxsackievirus-induced myocarditis in mice. We then identified the human homologue for this microRNA and compared its expression in plasma obtained from patients with acute myocarditis with the expression in various controls.


RESULTS - We confirmed that Th17 cells, which are characterized by the production of interleukin-17, are a characteristic feature of myocardial injury in the acute phase of myocarditis. The microRNA mmu-miR-721 was synthesized by Th17 cells and was present in the plasma of mice with acute autoimmune or viral myocarditis but not in those with acute myocardial infarction. The human homologue, designated hsa-miR-Chr8:96, was identified in four independent cohorts of patients with myocarditis. The area under the receiver-operating-characteristic curve for this novel microRNA for distinguishing patients with acute myocarditis from those with myocardial infarction was 0.927 (95% confidence interval, 0.879 to 0.975). The microRNA retained its diagnostic value in models after adjustment for age, sex, ejection fraction, and serum troponin level.


CONCLUSIONS - After identifying a novel microRNA in mice and humans with myocarditis, we found that the human homologue (hsa-miR-Chr8:96) could be used to distinguish patients with myocarditis from those with myocardial infarction. (Funded by the Spanish Ministry of Science and Innovation and others.)