CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Single-Molecule hsTnI and Short-Term Risk in Stable Patients With Chest Pain Development and validation of a simple risk score to predict 30-day readmission after percutaneous coronary intervention in a cohort of medicare patients A VOYAGER Meta-Analysis of the Impact of Statin Therapy on Low-Density Lipoprotein Cholesterol and Triglyceride Levels in Patients With Hypertriglyceridemia 2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques Predicting Major Adverse Events in Patients With Acute Myocardial Infarction Optimal Stenting Technique for Complex Coronary Lesions Intracoronary Imaging-Guided Pre-Dilation, Stent Sizing, and Post-Dilation Qualitative Methodology in Cardiovascular Outcomes Research: A Contemporary Look Successful catheter ablation of electrical storm after myocardial infarction Cardiac Troponin Elevation in Patients Without a Specific Diagnosis Cardiac monocytes and macrophages after myocardial infarction

Original Research2021; 384:2014-2027

JOURNAL:N Engl J Med. Article Link

A Novel Circulating MicroRNA for the Detection of Acute Myocarditis

R Blanco-Domínguez, R Sánchez-Díaz, H de la Fuente et al. Keywords: acute myocarditis; AMI; differential diagnosis

ABSTRACT

BACKGROUND - The diagnosis of acute myocarditis typically requires either endomyocardial biopsy (which is invasive) or cardiovascular magnetic resonance imaging (which is not universally available). Additional approaches to diagnosis are desirable. We sought to identify a novel microRNA for the diagnosis of acute myocarditis.


METHODS - To identify a microRNA specific for myocarditis, we performed microRNA microarray analyses and quantitative polymerase-chain-reaction (qPCR) assays in sorted CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis or myocardial infarction in mice. We also performed qPCR in samples from coxsackievirus-induced myocarditis in mice. We then identified the human homologue for this microRNA and compared its expression in plasma obtained from patients with acute myocarditis with the expression in various controls.


RESULTS - We confirmed that Th17 cells, which are characterized by the production of interleukin-17, are a characteristic feature of myocardial injury in the acute phase of myocarditis. The microRNA mmu-miR-721 was synthesized by Th17 cells and was present in the plasma of mice with acute autoimmune or viral myocarditis but not in those with acute myocardial infarction. The human homologue, designated hsa-miR-Chr8:96, was identified in four independent cohorts of patients with myocarditis. The area under the receiver-operating-characteristic curve for this novel microRNA for distinguishing patients with acute myocarditis from those with myocardial infarction was 0.927 (95% confidence interval, 0.879 to 0.975). The microRNA retained its diagnostic value in models after adjustment for age, sex, ejection fraction, and serum troponin level.


CONCLUSIONS - After identifying a novel microRNA in mice and humans with myocarditis, we found that the human homologue (hsa-miR-Chr8:96) could be used to distinguish patients with myocarditis from those with myocardial infarction. (Funded by the Spanish Ministry of Science and Innovation and others.)