CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Systemic microvascular dysfunction in microvascular and vasospastic angina Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure With Preserved Ejection Fraction Nocturnal thoracic volume overload and post-discharge outcomes in patients hospitalized for acute heart failure Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis Extreme Levels of Air Pollution Associated With Changes in Biomarkers of Atherosclerotic Plaque Vulnerability and Thrombogenicity in Healthy Adults Plasma Ionized Calcium and Risk of Cardiovascular Disease: 106 774 Individuals from the Copenhagen General Population Study 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Association of Statin Use With All-Cause and Cardiovascular Mortality in US Veterans 75 Years and Older Clinical Impact of Valvular Heart Disease in Elderly Patients Admitted for Acute Coronary Syndrome: Insights From the Elderly-ACS 2 Study Coronary Access After TAVR

Original Research2021; 384:2014-2027

JOURNAL:N Engl J Med. Article Link

A Novel Circulating MicroRNA for the Detection of Acute Myocarditis

R Blanco-Domínguez, R Sánchez-Díaz, H de la Fuente et al. Keywords: acute myocarditis; AMI; differential diagnosis

ABSTRACT

BACKGROUND - The diagnosis of acute myocarditis typically requires either endomyocardial biopsy (which is invasive) or cardiovascular magnetic resonance imaging (which is not universally available). Additional approaches to diagnosis are desirable. We sought to identify a novel microRNA for the diagnosis of acute myocarditis.


METHODS - To identify a microRNA specific for myocarditis, we performed microRNA microarray analyses and quantitative polymerase-chain-reaction (qPCR) assays in sorted CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis or myocardial infarction in mice. We also performed qPCR in samples from coxsackievirus-induced myocarditis in mice. We then identified the human homologue for this microRNA and compared its expression in plasma obtained from patients with acute myocarditis with the expression in various controls.


RESULTS - We confirmed that Th17 cells, which are characterized by the production of interleukin-17, are a characteristic feature of myocardial injury in the acute phase of myocarditis. The microRNA mmu-miR-721 was synthesized by Th17 cells and was present in the plasma of mice with acute autoimmune or viral myocarditis but not in those with acute myocardial infarction. The human homologue, designated hsa-miR-Chr8:96, was identified in four independent cohorts of patients with myocarditis. The area under the receiver-operating-characteristic curve for this novel microRNA for distinguishing patients with acute myocarditis from those with myocardial infarction was 0.927 (95% confidence interval, 0.879 to 0.975). The microRNA retained its diagnostic value in models after adjustment for age, sex, ejection fraction, and serum troponin level.


CONCLUSIONS - After identifying a novel microRNA in mice and humans with myocarditis, we found that the human homologue (hsa-miR-Chr8:96) could be used to distinguish patients with myocarditis from those with myocardial infarction. (Funded by the Spanish Ministry of Science and Innovation and others.)