CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

What's new in the Fourth Universal Definition of Myocardial infarction? Respiratory syncytial virus infection and risk of acute myocardial infarction Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016 Heart failure with preserved ejection fraction: from mechanisms to therapies The SABRE Trial (Sirolimus Angioplasty Balloon for Coronary In-Stent Restenosis): Angiographic Results and 1-Year Clinical Outcomes Does calcium burden impact culprit lesion morphology and clinical results? An ADAPT-DES IVUS substudy Sex Differences in Clinical Profiles and Quality of Care Among Patients With ST-Segment Elevation Myocardial Infarction From 2001 to 2011: Insights From the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective Study Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction Low-Dose Aspirin Discontinuation and Risk of Cardiovascular Events: A Swedish Nationwide, Population-Based Cohort Study Wearable Cardioverter-Defibrillator after Myocardial Infarction

Original Research2021 May 4;S0022-5223(21)00767-4.

JOURNAL:J Thorac Cardiovasc Surg. Article Link

Outcomes of procedural complications in transfemoral transcatheter aortic valve replacement

ED Percy, M Harloff, T Kaneko et al. Keywords: bundle branch block; pacemaker; paravalvular leak; stroke; survival; TAVR

ABSTRACT

OBJECTIVES - As the application of transcatheter aortic valve replacement (TAVR) expands, the longitudinal implications of periprocedural complications are increasingly relevant. We examine the influence of TAVR complications on midterm survival.

 

METHODS - Patients undergoing transfemoral TAVR at our institution between November 2011 and June 2018 were reviewed. Stroke severity was classified according to the National Institutes of Health stroke score. Kaplan-Meier analysis was used to assess survival, and a Cox proportional hazards model was created to examine independent associations with survival. The median follow-up time was 36 months for a total of 2789 patient-years.

 

RESULTS - Overall, 866 patients were included. The mean age was 80 ± 9.5 years and mean Society of Thoracic Surgeons score was 4.8% ± 2.7%. The mortality rate at 30-days was 2.8% and 11.8% at 1 year. In-hospital left bundle branch block and 30-day permanent pacemaker insertion occurred in 14.8% and 7.9%, respectively. Postprocedural greater-than-mild paravalvular leak was present in 4.4% and stroke occurred in 3.8% at 30-days. Greater-than-mild paravalvular leak was associated with decreased survival at 2 years (P = .02), but not at 5 years. Severe stroke was independently associated with decreased survival at 5 years (hazard ratio, 5.73; 95% confidence interval, 2.29-14.36; P .001); however, the effect of nonsevere stroke did not reach significance (hazard ratio, 1.69; 95% confidence interval, 0.82-3.47; P = .152).

 

CONCLUSIONS - Severe stroke was independently associated with decreased 5-year survival and initial risks associated with paravalvular leak may be attenuated over the midterm following transfemoral TAVR. Strategies to minimize the incidence of stroke and paravalvular leak must be prioritized to improve longitudinal outcomes after TAVR.