CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study Delirium After TAVR: Crosspassing the Limit of Resilience Cardiovascular Magnetic Resonance as a complementary method to Transthoracic Echocardiography for Aortic Valve Area Estimation in patients with Aortic Stenosis: A systematic review and meta-analysis Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes Impact of Positive and Negative Lesion Site Remodeling on Clinical Outcomes : Insights From PROSPECT Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement Active SB-P Versus Conventional Approach to the Protection of High-Risk Side Branches: The CIT-RESOLVE Trial Randomized Evaluation of Heart Failure With Preserved Ejection Fraction Patients With Acute Heart Failure and Dopamine - The ROPA-DOP Trial Early Rhythm-Control Therapy in Patients with Atrial Fibrillation Why NOBLE and EXCEL Are Consistent With Each Other and With Previous Trials

Original Research2021 May 11;77(18):2276-2287.

JOURNAL:J Am Coll Cardiol. Article Link

Stroke Complicating Infective Endocarditis After Transcatheter Aortic Valve Replacement

DD Val, M Abdel-Wahab, J Rodés-Cabau et al. Keywords: infective endocarditis; prosthetic valve endocarditis; stroke; TAVR;

ABSTRACT

BACKGROUND - Stroke is one of the most common and potentially disabling complications of infective endocarditis (IE). However, scarce data exist about stroke complicating IE after transcatheter aortic valve replacement (TAVR).


OBJECTIVES - The purpose of this study was to determine the incidence, risk factors, clinical characteristics, management, and outcomes of patients with definite IE after TAVR complicated by stroke during index IE hospitalization.


METHODS - Data from the Infectious Endocarditis after TAVR International Registry (including 569 patients who developed definite IE following TAVR from 59 centers in 11 countries) was analyzed. Patients were divided into two groups according to stroke occurrence during IE admission (stroke [S-IE] vs. no stroke [NS-IE]).


RESULTS - A total of 57 (10%) patients had a stroke during IE hospitalization, with no differences in causative microorganism between groups. S-IE patients exhibited higher rates of acute renal failure, systemic embolization, and persistent bacteremia (p < 0.05 for all). Previous stroke before IE, residual aortic regurgitation ≥moderate after TAVR, balloon-expandable valves, IE within 30 days after TAVR, and vegetation size >8 mm were associated with a higher risk of stroke during the index IE hospitalization (p < 0.05 for all). Stroke rate in patients with no risk factors was 3.1% and increased up to 60% in the presence of >3 risk factors. S-IE patients had higher rates of in-hospital mortality (54.4% vs. 28.7%; p < 0.001) and overall mortality at 1 year (66.3% vs. 45.6%; p < 0.001). Surgical treatment was not associated with improved outcomes in S-IE patients (in-hospital mortality: 46.2% in surgical vs. 58.1% in no surgical treatment; p = 0.47).


CONCLUSIONS - Stroke occurred in 1 of 10 patients with IE post-TAVR. A history of stroke, short time between TAVR and IE, vegetation size, valve prosthesis type, and residual aortic regurgitation determined an increased risk. The occurrence of stroke was associated with increased in-hospital and 1-year mortality rates, and surgical treatment failed to improve clinical outcomes.