CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Definitions and classifications of bifurcation lesions and treatment Definition, classification and diagnosis of pulmonary hypertension Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium De-escalating Dual Antiplatelet Therapy to Ticagrelor Monotherapy in Acute Coronary Syndrome : A Systematic Review and Individual Patient Data Meta-analysis of Randomized Clinical Trials Ticagrelor alone versus ticagrelor plus aspirin from month 1 to month 12 after percutaneous coronary intervention in patients with acute coronary syndromes (ULTIMATE-DAPT): a randomised, placebo-controlled, double-blind clinical trial TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation IVUS-Guided vs Angiography-Guided PCI in Patients With Diabetes With Acute Coronary Syndromes: The IVUS-ACS Trial Beta-Blockers after Myocardial Infarction and Preserved Ejection Fraction Viridans Streptococcal Biofilm Evades Immune Detection and Contributes to Inflammation and Rupture of Atherosclerotic Plaques Beta-Blockers after Myocardial Infarction and Preserved Ejection Fraction

Original Research2021 May 11;77(18):2276-2287.

JOURNAL:J Am Coll Cardiol. Article Link

Stroke Complicating Infective Endocarditis After Transcatheter Aortic Valve Replacement

DD Val, M Abdel-Wahab, J Rodés-Cabau et al. Keywords: infective endocarditis; prosthetic valve endocarditis; stroke; TAVR;

ABSTRACT

BACKGROUND - Stroke is one of the most common and potentially disabling complications of infective endocarditis (IE). However, scarce data exist about stroke complicating IE after transcatheter aortic valve replacement (TAVR).


OBJECTIVES - The purpose of this study was to determine the incidence, risk factors, clinical characteristics, management, and outcomes of patients with definite IE after TAVR complicated by stroke during index IE hospitalization.


METHODS - Data from the Infectious Endocarditis after TAVR International Registry (including 569 patients who developed definite IE following TAVR from 59 centers in 11 countries) was analyzed. Patients were divided into two groups according to stroke occurrence during IE admission (stroke [S-IE] vs. no stroke [NS-IE]).


RESULTS - A total of 57 (10%) patients had a stroke during IE hospitalization, with no differences in causative microorganism between groups. S-IE patients exhibited higher rates of acute renal failure, systemic embolization, and persistent bacteremia (p < 0.05 for all). Previous stroke before IE, residual aortic regurgitation ≥moderate after TAVR, balloon-expandable valves, IE within 30 days after TAVR, and vegetation size >8 mm were associated with a higher risk of stroke during the index IE hospitalization (p < 0.05 for all). Stroke rate in patients with no risk factors was 3.1% and increased up to 60% in the presence of >3 risk factors. S-IE patients had higher rates of in-hospital mortality (54.4% vs. 28.7%; p < 0.001) and overall mortality at 1 year (66.3% vs. 45.6%; p < 0.001). Surgical treatment was not associated with improved outcomes in S-IE patients (in-hospital mortality: 46.2% in surgical vs. 58.1% in no surgical treatment; p = 0.47).


CONCLUSIONS - Stroke occurred in 1 of 10 patients with IE post-TAVR. A history of stroke, short time between TAVR and IE, vegetation size, valve prosthesis type, and residual aortic regurgitation determined an increased risk. The occurrence of stroke was associated with increased in-hospital and 1-year mortality rates, and surgical treatment failed to improve clinical outcomes.