CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study Left Main Revascularization in 2017: Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? Efficacy and Safety of Ticagrelor Monotherapy in Patients Undergoing Multivessel PCI Sex-Based Outcomes in Patients With a High Bleeding Risk After Percutaneous Coronary Intervention and 1-Month Dual Antiplatelet Therapy: A Secondary Analysis of the LEADERS FREE Randomized Clinical Trial Prognostic Value of Computed Tomography-Derived Extracellular Volume in TAVR Patients With Low-Flow Low-Gradient Aortic Stenosis Safety and efficacy of the bioabsorbable polymer everolimus-eluting stent versus durable polymer drug-eluting stents in high-risk patients undergoing PCI: TWILIGHT-SYNERGY Pooled Analysis of Bleeding, Major Adverse Cardiovascular Events, and All-Cause Mortality in Clinical Trials of Time-Constrained Dual-Antiplatelet Therapy After Percutaneous Coronary Intervention A randomized clinical study comparing double kissing crush with provisional stenting for treatment of coronary bifurcation lesions: results from the DKCRUSH-II (Double Kissing Crush versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions) trial Ticagrelor With or Without Aspirin in High-Risk Patients With Diabetes Mellitus Undergoing Percutaneous Coronary Intervention Percutaneous coronary intervention in left main coronary artery disease: the 13th consensus document from the European Bifurcation Club

Review Article2021 Jun 4;PP.

JOURNAL:IEEE Trans Med Imaging. Article Link

Dynamic Myocardial Ultrasound Localization Angiography

P Cormier, J Poree, C Bourquin et al. Keywords: dynamic myocardial ultrasound localization angiography

ABSTRACT

Dynamic Myocardial Ultrasound Localization Angiography (MULA) is an ultrasound-based imaging modality destined to enhance the diagnosis and treatment monitoring of coronary pathologies. Current diagnosis methods of coronary artery disease focus on the observation of vessel narrowing in the coronary vasculature to assess the organ’s condition. However, we would strongly benefit from mapping and measuring flow from intramyocardial arterioles and capillaries as they are the direct vehicle of the myocardium blood income. With the advent of ultrafast ultrasound scanners, imaging modalities based on the localization and tracking of injected microbubbles allow for the subwavelength resolution imaging of an organ’s vasculature. Yet, the application of these vascular imaging modalities relies on an accumulation of cine loops of a region of interest undergoing no or minimal tissue motion. This work introduces the MULA framework that combines 1) the mapping of the dynamics of the microvascular flow using an ultrasound sequence triggered by the electrocardiogram with a 2) novel Lagrangian beamformer based on non-rigid motion registration algorithm to form images directly in the myocardium’s material coordinates and thus correcting for the large myocardial motion and deformation. Specifically, we show that this framework enables the non-invasive imaging of the angioarchitecture and dynamics of intramyocardial flow in vessels as small as a few tens of microns in the rat’s beating heart in vivo.