CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Response by Kaier et al to Letter Regarding Article, “Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction” The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE) Prospective Study of Percutaneous Coronary Intervention: Study Design Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study Letter by Jiang et al Regarding Article, “Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction” Biological Versus Chronological Aging: JACC Focus Seminar Clinical Implications of Periprocedural Myocardial Injury in Patients Undergoing Percutaneous Coronary Intervention for Chronic Total Occlusion: Role of Antegrade and Retrograde Crossing Techniques Mechanisms of Vascular Aging, A Geroscience Perspective JACC Focus Seminar Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease ACC临床简报:新型冠状病毒对心脏的影响(2019-nCoV) 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society

Review Article2021 Jun 4;PP.

JOURNAL:IEEE Trans Med Imaging. Article Link

Dynamic Myocardial Ultrasound Localization Angiography

P Cormier, J Poree, C Bourquin et al. Keywords: dynamic myocardial ultrasound localization angiography

ABSTRACT

Dynamic Myocardial Ultrasound Localization Angiography (MULA) is an ultrasound-based imaging modality destined to enhance the diagnosis and treatment monitoring of coronary pathologies. Current diagnosis methods of coronary artery disease focus on the observation of vessel narrowing in the coronary vasculature to assess the organ’s condition. However, we would strongly benefit from mapping and measuring flow from intramyocardial arterioles and capillaries as they are the direct vehicle of the myocardium blood income. With the advent of ultrafast ultrasound scanners, imaging modalities based on the localization and tracking of injected microbubbles allow for the subwavelength resolution imaging of an organ’s vasculature. Yet, the application of these vascular imaging modalities relies on an accumulation of cine loops of a region of interest undergoing no or minimal tissue motion. This work introduces the MULA framework that combines 1) the mapping of the dynamics of the microvascular flow using an ultrasound sequence triggered by the electrocardiogram with a 2) novel Lagrangian beamformer based on non-rigid motion registration algorithm to form images directly in the myocardium’s material coordinates and thus correcting for the large myocardial motion and deformation. Specifically, we show that this framework enables the non-invasive imaging of the angioarchitecture and dynamics of intramyocardial flow in vessels as small as a few tens of microns in the rat’s beating heart in vivo.