CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study Frequency of nonsystem delays in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and implications for door-to-balloon time reporting (from the American Heart Association Mission: Lifeline program) Long-term Survival following Multivessel Revascularization in Patients with Diabetes (FREEDOM Follow-On Study) Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials FFR-guided multivessel stenting reduces urgent revascularization compared with infarct-related artery only stenting in ST-elevation myocardial infarction: A meta-analysis of randomized controlled trials

Review Article2021 Jun 4;PP.

JOURNAL:IEEE Trans Med Imaging. Article Link

Dynamic Myocardial Ultrasound Localization Angiography

P Cormier, J Poree, C Bourquin et al. Keywords: dynamic myocardial ultrasound localization angiography

ABSTRACT

Dynamic Myocardial Ultrasound Localization Angiography (MULA) is an ultrasound-based imaging modality destined to enhance the diagnosis and treatment monitoring of coronary pathologies. Current diagnosis methods of coronary artery disease focus on the observation of vessel narrowing in the coronary vasculature to assess the organ’s condition. However, we would strongly benefit from mapping and measuring flow from intramyocardial arterioles and capillaries as they are the direct vehicle of the myocardium blood income. With the advent of ultrafast ultrasound scanners, imaging modalities based on the localization and tracking of injected microbubbles allow for the subwavelength resolution imaging of an organ’s vasculature. Yet, the application of these vascular imaging modalities relies on an accumulation of cine loops of a region of interest undergoing no or minimal tissue motion. This work introduces the MULA framework that combines 1) the mapping of the dynamics of the microvascular flow using an ultrasound sequence triggered by the electrocardiogram with a 2) novel Lagrangian beamformer based on non-rigid motion registration algorithm to form images directly in the myocardium’s material coordinates and thus correcting for the large myocardial motion and deformation. Specifically, we show that this framework enables the non-invasive imaging of the angioarchitecture and dynamics of intramyocardial flow in vessels as small as a few tens of microns in the rat’s beating heart in vivo.