CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Factors associated with pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc) Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a Medicare population MR-proADM as a Prognostic Marker in Patients With ST-Segment-Elevation Myocardial Infarction-DANAMI-3 (a Danish Study of Optimal Acute Treatment of Patients With STEMI) Substudy Prevalence of anginal symptoms and myocardial ischemia and their effect on clinical outcomes in outpatients with stable coronary artery disease: data from the International Observational CLARIFY Registry Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction 4-Step Protocol for Disparities in STEMI Care and Outcomes in Women Cardiopulmonary Exercise Testing: What Is its Value? Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock Chronic total occlusion intervention of the non-infarct-related artery in acute myocardial infarction patients: the Korean multicenter chronic total occlusion registry Association of Silent Myocardial Infarction and Sudden Cardiac Death

Original ResearchVolume 114, August 2021, Pages 11-24

JOURNAL:Trends Food Sci Technol. Article Link

Potential protective mechanisms of green tea polyphenol EGCG against COVID-19

Y Zhang, B Wernly, ZCh Zhou et al. Keywords: COVID-19; prevention; green tea; EGCG

ABSTRACT

BACKGROUND - The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of ()-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19.


SCOPE AND APPROACH - Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated.


KEY FINDINGS AND CONCLUSIONS - EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.