CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Qualitative Methodology in Cardiovascular Outcomes Research: A Contemporary Look Optimal Stenting Technique for Complex Coronary Lesions Intracoronary Imaging-Guided Pre-Dilation, Stent Sizing, and Post-Dilation Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction Advances in Coronary No-Reflow Phenomenon-a Contemporary Review Long-Term Outcomes of Biodegradable Versus Second-Generation Durable Polymer Drug-Eluting Stent Implantations for Myocardial Infarction Natural History of Spontaneous Coronary Artery Dissection With Spontaneous Angiographic Healing 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA /ASH/ ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary : A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Proportion and Morphological Features of Restenosis Lesions With Acute Coronary Syndrome in Different Timings of Target Lesion Revascularization After Sirolimus-Eluting Stent Implantation Association Between Haptoglobin Phenotype and Microvascular Obstruction in Patients With STEMI: A Cardiac Magnetic Resonance Study Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations

Original ResearchVolume 114, August 2021, Pages 11-24

JOURNAL:Trends Food Sci Technol. Article Link

Potential protective mechanisms of green tea polyphenol EGCG against COVID-19

Y Zhang, B Wernly, ZCh Zhou et al. Keywords: COVID-19; prevention; green tea; EGCG

ABSTRACT

BACKGROUND - The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of ()-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19.


SCOPE AND APPROACH - Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated.


KEY FINDINGS AND CONCLUSIONS - EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.