CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Colchicine Inhibits Neutrophil Extracellular Trap Formation in Patients With Acute Coronary Syndrome After Percutaneous Coronary Intervention Recommendations for Institutions Transitioning to High-Sensitivity Troponin Testing JACC Scientific Expert Panel Impact of Percutaneous Coronary Intervention for Chronic Total Occlusion in Non-Infarct-Related Arteries in Patients With Acute Myocardial Infarction (from the COREA-AMI Registry) Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction Contemporary use of drug-coated balloons in coronary artery disease: Where are we now? Prognostic Value of the Residual SYNTAX Score After Functionally Complete Revascularization in ACS Comparison in prevalence, predictors, and clinical outcome of VSR versus FWR after acute myocardial infarction: The prospective, multicenter registry MOODY trial-heart rupture analysis Impact of tissue protrusion after coronary stenting in patients with ST-segment elevation myocardial infarction Optimal medical therapy vs. coronary revascularization for patients presenting with chronic total occlusion: A meta-analysis of randomized controlled trials and propensity score adjusted studies

Original ResearchVolume 114, August 2021, Pages 11-24

JOURNAL:Trends Food Sci Technol. Article Link

Potential protective mechanisms of green tea polyphenol EGCG against COVID-19

Y Zhang, B Wernly, ZCh Zhou et al. Keywords: COVID-19; prevention; green tea; EGCG

ABSTRACT

BACKGROUND - The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of ()-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19.


SCOPE AND APPROACH - Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated.


KEY FINDINGS AND CONCLUSIONS - EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.