CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement Aliskiren, Enalapril, or Aliskiren and Enalapril in Heart Failure Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction Association of Cardiovascular Disease With Respiratory Disease Comparison of safety and periprocedural complications of transfemoral aortic valve replacement under local anaesthesia: minimalist versus complete Heart Team Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? 2019 ACC/AHA/ASE Advanced Training Statement on Echocardiography (Revision of the 2003 ACC/AHA Clinical Competence Statement on Echocardiography): A Report of the ACC Competency Management Committee From Focal Lipid Storage to Systemic Inflammation Heart Failure With Improved Ejection Fraction-Is it Possible to Escape One’s Past? Clinical Risk Factors and Atherosclerotic Plaque Extent to Define Risk for Major Events in Patients Without Obstructive Coronary Artery Disease: The Long-Term Coronary Computed Tomography Angiography CONFIRM Registry

Original ResearchVolume 114, August 2021, Pages 11-24

JOURNAL:Trends Food Sci Technol. Article Link

Potential protective mechanisms of green tea polyphenol EGCG against COVID-19

Y Zhang, B Wernly, ZCh Zhou et al. Keywords: COVID-19; prevention; green tea; EGCG

ABSTRACT

BACKGROUND - The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of ()-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19.


SCOPE AND APPROACH - Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated.


KEY FINDINGS AND CONCLUSIONS - EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.