CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Risk Stratification for Patients in Cardiogenic Shock After Acute Myocardial Infarction Cardiac Implantable Electronic Devices in Patients With Left Ventricular Assist Systems Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR) Left Main Revascularization in 2017 Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead? The Wait for High-Sensitivity Troponin Is Over—Proceed Cautiously Impact of the US Food and Drug Administration–Approved Sex-Specific Cutoff Values for High-Sensitivity Cardiac Troponin T to Diagnose Myocardial Infarction Comparison of double kissing crush versus Culotte stenting for unprotected distal left main bifurcation lesions: results from a multicenter, randomized, prospective DKCRUSH-III study Usefulness of the SYNTAX score II to validate 2-year outcomes in patients with complex coronary artery disease undergoing percutaneous coronary intervention: A large single-center study In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography

Original ResearchNov 08, 2021.

JOURNAL:J Am Coll Cardiol Img. Article Link

Plaque Rupture, compared to Plaque Erosion, is associated with Higher Level of Pan-coronary Inflammation

A Nakajima , T Sugiyama , M Araki et al. Keywords: plaque rupture; plaque erosion; inflammation; ASCVD;

ABSTRACT

BACKGROUND - Vascular inflammation plays a key role in plaque rupture, while the role of inflammation in plaque erosion remains less well defined. Peri-coronary adipose tissue (PCAT) attenuation determined by computed tomography has emerged as a marker specific for coronary artery inflammation.

 

OBJECTIVES - To compare the level of coronary inflammation between plaque rupture and plaque erosion using PCAT attenuation.

 

METHODS - Patients with non-ST-segment elevation acute coronary syndromes who underwent pre-intervention coronary computed tomography angiography and optical coherence tomography culprit lesion imaging were enrolled. PCAT attenuation was measured around the culprit lesion and in the proximal 40mm of all coronary arteries.

 

RESULTS - Out of 198 patients, plaque rupture was the underlying mechanism in 107 patients (54.0%) and plaque erosion in 91 (46.0%) patients. Plaque rupture had higher PCAT attenuation than plaque erosion both at the culprit plaque level (-65.8 ± 7.5 vs. -69.5 ± 11.4 Hounsfield unit [HU], p = 0.010) and at the culprit vessel level (-67.1 ± 7.1 vs. -69.6 ± 8.2 HU, p = 0.024). The mean PCAT attenuation of all 3 coronary arteries was also significantly higher in patients with plaque rupture than in plaque erosion indicating a higher level of inflammation (-67.9 ± 5.7 vs. -69.9 ± 6.8 HU, p = 0.030). In multivariable analysis, plaque rupture was significantly associated with high PCAT attenuation.

 

CONCLUSIONS - PCAT attenuation in culprit plaque, culprit vessel, and all 3 coronary arteries was higher in plaque rupture than in plaque erosion. The results suggest pan-coronary inflammation plays a more significant role in plaque rupture than in plaque erosion.