CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes Transcatheter Aortic Valve Replacement: Role of Multimodality Imaging in Common and Complex Clinical Scenarios Serial intravascular ultrasound analysis of the main and side branches in bifurcation lesions treated with the T-stenting technique Left Ventricular Hypertrophy and Clinical Outcomes Over 5 Years After TAVR: An Analysis of the PARTNER Trials and Registries Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data von Willebrand Factor and Management of Heart Valve Disease: JACC Review Topic of the Week A Review of the Role of Breast Arterial Calcification for Cardiovascular Risk Stratification in Women Coronary Protection to Prevent Coronary Obstruction During TAVR: A Multicenter International Registry Percutaneous Coronary Intervention of Left Main Disease: Pre- and Post-EXCEL (Evaluation of XIENCE Everolimus Eluting Stent Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) and NOBLE (Nordic-Baltic-British Left Main Revascularization Study) Era Association of White Matter Hyperintensities and Cardiovascular Disease: The Importance of Microcirculatory Disease

Original ResearchVolume 117, Issue 4, 1 April 2021, Pages 1091–1102

JOURNAL:Cardiovasc Res. Article Link

Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts

Y Zhang, Y Qi, JJ Li, WJ He et al. Keywords: AF; hypertension; underlying mechanism

ABSTRACT

AIMS - Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts.


METHODS AND RESULTS - Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+leak in left atrial myocytes and prevented atrial burst pacing stimulated AF.


CONCLUSIONS -Our study demonstrated for the first time the increased SR Ca2+leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.