CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

'Ticagrelor alone vs. dual antiplatelet therapy from 1 month after drug-eluting coronary stenting among patients with STEMI': a post hoc analysis of the randomized GLOBAL LEADERS trial MINOCA: a heterogenous group of conditions associated with myocardial damage Evolving concepts in the management of antithrombotic therapy in patients undergoing transcatheter aortic valve implantation Acute Coronary Syndrome, Antiplatelet Therapy, and Bleeding: A Clinical Perspective Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease : A Special Report From the American Heart Association and American College of Cardiology Randomized Comparison Between Everolimus-Eluting Bioresorbable Scaffold and Metallic Stent: Multimodality Imaging Through 3 Years Rivaroxaban Plus Aspirin in Patients With Vascular Disease and Renal Dysfunction: From the COMPASS Trial 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? SR-B1 Drives Endothelial Cell LDL Transcytosis via DOCK4 to Promote Atherosclerosis

Original ResearchVolume 117, Issue 4, 1 April 2021, Pages 1091–1102

JOURNAL:Cardiovasc Res. Article Link

Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts

Y Zhang, Y Qi, JJ Li, WJ He et al. Keywords: AF; hypertension; underlying mechanism

ABSTRACT

AIMS - Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts.


METHODS AND RESULTS - Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+leak in left atrial myocytes and prevented atrial burst pacing stimulated AF.


CONCLUSIONS -Our study demonstrated for the first time the increased SR Ca2+leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.