CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

De-escalation of antianginal medications after successful chronic total occlusion percutaneous coronary intervention: Frequency and relationship with health status Stent fracture is associated with a higher mortality in patients with type-2 diabetes treated by implantation of a second-generation drug-eluting stent New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial Defining Staged Procedures for Percutaneous Coronary Intervention Trials A Guidance Document Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure Association of Parenteral Anticoagulation Therapy With Outcomes in Chinese Patients Undergoing Percutaneous Coronary Intervention for Non-ST-Segment Elevation Acute Coronary Syndrome Impact of age and comorbidity on risk stratification in idiopathic pulmonary arterial hypertension

Original ResearchVolume 117, Issue 4, 1 April 2021, Pages 1091–1102

JOURNAL:Cardiovasc Res. Article Link

Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts

Y Zhang, Y Qi, JJ Li, WJ He et al. Keywords: AF; hypertension; underlying mechanism

ABSTRACT

AIMS - Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts.


METHODS AND RESULTS - Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+leak in left atrial myocytes and prevented atrial burst pacing stimulated AF.


CONCLUSIONS -Our study demonstrated for the first time the increased SR Ca2+leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.