CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Can the Vanishing Stent Reappear? Fix the Technique, or Fix the Device? Coronary Angiography after Cardiac Arrest — The Right Timing or the Right Patients? Disrupting Fellow Education Through Group Texting: WhatsApp in Fellow Education? Healthy Behavior, Risk Factor Control, and Survival in the COURAGE Trial Coronary Artery Calcium Is Associated with Left Ventricular Diastolic Function Independent of Myocardial Ischemia Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events in the ODYSSEY OUTCOMES Trial Optimal medical therapy improves clinical outcomes in patients undergoing revascularization with percutaneous coronary intervention or coronary artery bypass grafting: insights from the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial at the 5-year follow-up Incidence and Clinical Outcomes of Stent Fractures on the Basis of 6,555 Patients and 16,482 Drug-Eluting Stents From 4 Centers Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Implantation Qualitative and Mixed Methods Provide Unique Contributions to Outcomes Research

Original ResearchVolume 117, Issue 4, 1 April 2021, Pages 1091–1102

JOURNAL:Cardiovasc Res. Article Link

Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts

Y Zhang, Y Qi, JJ Li, WJ He et al. Keywords: AF; hypertension; underlying mechanism

ABSTRACT

AIMS - Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts.


METHODS AND RESULTS - Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+leak in left atrial myocytes and prevented atrial burst pacing stimulated AF.


CONCLUSIONS -Our study demonstrated for the first time the increased SR Ca2+leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.