CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Evolving insights into the role of local shear stress in late stent failure from neoatherosclerosis formation and plaque destabilization Venous and Arterial Thromboembolism in Patients With Cancer: JACC: CardioOncology State-of-the-Art Review Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee 2015 ACC/HRS/SCAI Left Atrial Appendage Occlusion Device Societal Overview 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension The Art of SAPIEN 3 Transcatheter Mitral Valve Replacement in Valve-in-Ring and Valve-in-Mitral-Annular-Calcification Procedures Functional Mitral Regurgitation Outcome and Grading in Heart Failure With Reduced Ejection Fraction Thirty-Day Outcomes Following Transfemoral Transseptal Transcatheter Mitral Valve Replacement: Intrepid TMVR Early Feasibility Study Results MITRA-FR vs. COAPT: Lessons from two trials with diametrically opposed results

Original Research2022 Jun 20;e13826.

JOURNAL:Eur J Clin Invest. Article Link

Prognostic implication of lipidomics in patients with coronary total occlusion undergoing PCI

Y Zhou, XD Wang, JY Qian et al. Keywords: biomarker; CTO; CAD; lipidomics; risk prediction

ABSTRACT

BACKGROUND - Predictors of prognosis in patients with coronary chronic total occlusion (CTO) undergoing elective percutaneous coronary intervention (PCI) have remained lacking. Lipidomic profiling enable researchers to associated lipid species with disease progression and may improve the prediction of cardiovascular events.


METHODS In the present study, 781 lipids were measured by targeted lipidomic profiling in 350 individuals (50 healthy controls, 50 patients with coronary artery disease and 250 patients with CTO). L1-regularized logistic regression was used to identify lipid species associated with adverse cardiovascular events and create predicting models which were verified by 10-fold cross-validation (200 repeats). Comparisons were made between a traditional model constructed with clinical characteristics alone and a combined model built with both lipidomic data and traditional factors.


RESULTS 24 lipid species were dysregulated exclusively in patients with CTO, most of which belonged to sphingomyelin (SM) and triacylglycerol (TAG). Compared with traditional risk factors, new model combining lipids and traditional factors had significantly improved performance in predicting adverse cardiovascular events in CTO patients after PCI (area under the curve, 0.870 vs. 0.726, p < 0.05; Akaike information criterion, 129 vs. 156; net reclassification improvement, 0.312, p < 0.001; integrated discrimination improvement, 0.244, p < 0.001). Nomogram was built based on the incorporated model and prove efficient by Kaplan-Meier method.


CONCLUSIONS - Lipidomic profiling revealed lipid species which may participated in the formation of CTO and could contribute to the risk stratification in CTO patients undergoing PCI.