CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Derivation and Validation of a Chronic Total Coronary Occlusion Intervention Procedural Success Score From the 20,000-Patient EuroCTO Registry:The EuroCTO (CASTLE) Score Individualizing Revascularization Strategy for Diabetic Patients With Multivessel Coronary Disease Rotational Atherectomy Followed by Drug-Coated Balloon Dilation for Left Main In-Stent Restenosis in the Setting of Acute Coronary Syndrome Complicated with Right Coronary Chronic Total Occlusion Acute Noncardiac Organ Failure in Acute Myocardial Infarction With Cardiogenic Shock ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk Spontaneous Coronary Artery Dissection: Current State of the Science: A Scientific Statement From the American Heart Association Atrial Fibrillation Burden: Moving Beyond Atrial Fibrillation as a Binary Entity: A Scientific Statement From the American Heart Association Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus Predicting Major Adverse Events in Patients With Acute Myocardial Infarction

Original Research2022 Jun 20;e13826.

JOURNAL:Eur J Clin Invest. Article Link

Prognostic implication of lipidomics in patients with coronary total occlusion undergoing PCI

Y Zhou, XD Wang, JY Qian et al. Keywords: biomarker; CTO; CAD; lipidomics; risk prediction

ABSTRACT

BACKGROUND - Predictors of prognosis in patients with coronary chronic total occlusion (CTO) undergoing elective percutaneous coronary intervention (PCI) have remained lacking. Lipidomic profiling enable researchers to associated lipid species with disease progression and may improve the prediction of cardiovascular events.


METHODS In the present study, 781 lipids were measured by targeted lipidomic profiling in 350 individuals (50 healthy controls, 50 patients with coronary artery disease and 250 patients with CTO). L1-regularized logistic regression was used to identify lipid species associated with adverse cardiovascular events and create predicting models which were verified by 10-fold cross-validation (200 repeats). Comparisons were made between a traditional model constructed with clinical characteristics alone and a combined model built with both lipidomic data and traditional factors.


RESULTS 24 lipid species were dysregulated exclusively in patients with CTO, most of which belonged to sphingomyelin (SM) and triacylglycerol (TAG). Compared with traditional risk factors, new model combining lipids and traditional factors had significantly improved performance in predicting adverse cardiovascular events in CTO patients after PCI (area under the curve, 0.870 vs. 0.726, p < 0.05; Akaike information criterion, 129 vs. 156; net reclassification improvement, 0.312, p < 0.001; integrated discrimination improvement, 0.244, p < 0.001). Nomogram was built based on the incorporated model and prove efficient by Kaplan-Meier method.


CONCLUSIONS - Lipidomic profiling revealed lipid species which may participated in the formation of CTO and could contribute to the risk stratification in CTO patients undergoing PCI.