CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress–Induced, Piezo-1–Mediated Monocyte Activation Minimum Core Data Elements for Evaluation of TAVR: A Scientific Statement by PASSION CV, HVC, and TVT Registry Apolipoprotein A-V is a potential target for treating coronary artery disease: evidence from genetic and metabolomic analyses Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR A Case of Pulmonary Hypertension Associated with Idiopathic Hypereosinophilic Syndrome Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry Survival prospects of treatment naïve patients with Eisenmenger: a systematic review of the literature and report of own experience The right ventricle in pulmonary hypertension Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: exercise; gas exchange analysis; heart failure; oxygen consumption

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.