CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Diagnostic Performance of Angiogram-Derived Fractional Flow Reserve: A Pooled Analysis of 5 Prospective Cohort Studies Medical Therapy for CTEPH: Is There Still Space for More? Utilization and Outcomes of Measuring Fractional Flow Reserve in Patients With Stable Ischemic Heart Disease Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis The Impact of Coronary Physiology on Contemporary Clinical Decision Making Circulating Plasma microRNAs In Systemic Sclerosis-Associated Pulmonary Arterial Hypertension Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies Coronary Physiology in the Cardiac Catheterization Laboratory Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina

Original Research2017 Dec;30(6):564-569.

JOURNAL:J Interv Cardiol. Article Link

Diagnostic accuracy of instantaneous wave free-ratio in clinical practice

Ding WY, Nair S, Appleby C. Keywords: fractional flow reserve; functional testing; instantaneous wave-free ratio; pressure wire studies

ABSTRACT


AIMS - To evaluate the correlation between iFR and FFR in real-world clinical practice.


METHODS AND RESULTS - Retrospective, single-centre study of 229 consecutive pressure-wire studies (np  = 158). Real-time iFR and FFR measurements were performed for angiographically borderline stenoses. Functionally significant stenoses were defined as iFR <0.86 or FFR ≤0.80. An iFR between 0.86 and 0.93 was considered within the grey zone (Hybrid approach). Median iFR and FFR (IQR) were 0.92 (0.87-0.95) and 0.83 (0.76-0.89), respectively. Pearson's correlation coefficient was 0.75 (P < 0.001). Bland-Altman plot showed a mean difference between iFR and FFR that remained consistent throughout the range of values. The optimal iFR cutoff was 0.91-sensitivity 80%, specificity 82% with ROC area under curve of 89%. Using the Hybrid iFR-FFR strategy, we demonstrated high accuracy of iFR results-sensitivity 95%, specificity 96%, PPV 95%, and NPV 96%. In addition, this method would have avoided adenosine in 56% of patients. Mean follow-up period was 17.2 (±3.4) months. All-cause mortality was 3.2% (np = 5) and repeat intervention was required in six lesions (2.6%).


CONCLUSIONS - This study demonstrates that iFR is a valuable adjunct to FFR using the Hybrid iFR-FFR strategy in a real-world population. The use of adenosine may be avoided in about half the cases.


© 2017, Wiley Periodicals, Inc.