CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

What's new in the Fourth Universal Definition of Myocardial infarction? Respiratory syncytial virus infection and risk of acute myocardial infarction Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016 Heart failure with preserved ejection fraction: from mechanisms to therapies The SABRE Trial (Sirolimus Angioplasty Balloon for Coronary In-Stent Restenosis): Angiographic Results and 1-Year Clinical Outcomes Does calcium burden impact culprit lesion morphology and clinical results? An ADAPT-DES IVUS substudy Sex Differences in Clinical Profiles and Quality of Care Among Patients With ST-Segment Elevation Myocardial Infarction From 2001 to 2011: Insights From the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective Study Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction Low-Dose Aspirin Discontinuation and Risk of Cardiovascular Events: A Swedish Nationwide, Population-Based Cohort Study Wearable Cardioverter-Defibrillator after Myocardial Infarction

Original Research2017 Dec;30(6):564-569.

JOURNAL:J Interv Cardiol. Article Link

Diagnostic accuracy of instantaneous wave free-ratio in clinical practice

Ding WY, Nair S, Appleby C. Keywords: fractional flow reserve; functional testing; instantaneous wave-free ratio; pressure wire studies

ABSTRACT


AIMS - To evaluate the correlation between iFR and FFR in real-world clinical practice.


METHODS AND RESULTS - Retrospective, single-centre study of 229 consecutive pressure-wire studies (np  = 158). Real-time iFR and FFR measurements were performed for angiographically borderline stenoses. Functionally significant stenoses were defined as iFR <0.86 or FFR ≤0.80. An iFR between 0.86 and 0.93 was considered within the grey zone (Hybrid approach). Median iFR and FFR (IQR) were 0.92 (0.87-0.95) and 0.83 (0.76-0.89), respectively. Pearson's correlation coefficient was 0.75 (P < 0.001). Bland-Altman plot showed a mean difference between iFR and FFR that remained consistent throughout the range of values. The optimal iFR cutoff was 0.91-sensitivity 80%, specificity 82% with ROC area under curve of 89%. Using the Hybrid iFR-FFR strategy, we demonstrated high accuracy of iFR results-sensitivity 95%, specificity 96%, PPV 95%, and NPV 96%. In addition, this method would have avoided adenosine in 56% of patients. Mean follow-up period was 17.2 (±3.4) months. All-cause mortality was 3.2% (np = 5) and repeat intervention was required in six lesions (2.6%).


CONCLUSIONS - This study demonstrates that iFR is a valuable adjunct to FFR using the Hybrid iFR-FFR strategy in a real-world population. The use of adenosine may be avoided in about half the cases.


© 2017, Wiley Periodicals, Inc.