CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging Comparison of Stenting Versus Bypass Surgery According to the Completeness of Revascularization in Severe Coronary Artery Disease: Patient-Level Pooled Analysis of the SYNTAX, PRECOMBAT, and BEST Trials Eruptive Calcified Nodules as a Potential Mechanism of Acute Coronary Thrombosis and Sudden Death Advances in Clinical Cardiology 2020: A Summary of Key Clinical Trials Effect of Smoking on Outcomes of Primary PCI in Patients With STEMI Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction Restenosis, Stent Thrombosis, and Bleeding Complications - Navigating Between Scylla and Charybdis

Original Research2018 Jan 2;71(1):1-8.

JOURNAL:J Am Coll Cardiol. Article Link

Silent Myocardial Infarction and Long-Term Risk of Heart Failure: The ARIC Study

Qureshi WT, Zhang ZM, Soliman EZ et al. Keywords: electrocardiogram; heart failure; silent myocardial infarction

ABSTRACT


BACKGROUND - Although silent myocardial infarction (SMI) accounts for about one-half of the total number of myocardial infarctions (MIs), the risk of heart failure (HF) among patients with SMI is not well established.


OBJECTIVES - The purpose of this study was to examine the association of SMI and clinically manifested myocardial infarction (CMI) with HF, as compared with patients with no MI.


METHODS - This analysis included 9,243 participants from the ARIC (Atherosclerosis Risk In Communities) study who were free of cardiovascular disease at baseline (ARIC visit 1: 1987 to 1989). SMI was defined as electrocardiographic evidence of MI without CMI after the baseline until ARIC visit 4 (1996 to 1998). HF events were ascertained starting from ARIC visit 4 until 2010 in individuals free of HF before that visit.


RESULTS - Between ARIC visits 1 and 4, 305 SMIs and 331 CMIs occurred. After ARIC visit 4 and during a median follow-up of 13.0 years, 976 HF events occurred. The incidence rate of HF was higher in both CMI and SMI participants than in those without MI (incidence rates per 1,000 person-years were 30.4, 16.2, and 7.8, respectively; p < 0.001). In a model adjusted for demographics and HF risk factors, both SMI (hazard ratio [HR]: 1.35; 95% confidence interval [CI]: 1.02 to 1.78) and CMI (HR: 2.85; 95% CI: 2.31 to 3.51) were associated with increased risk of HF compared with no MI. These associations were consistent in subgroups of participants stratified by several HF risk predictors. However, the risk of HF associated with SMI was stronger in those younger than the median age (53 years) (HR: 1.66; 95% CI: 1.00 to 2.75 vs. HR: 1.19; 95% CI: 0.85 to 1.66, respectively; overall interaction p by MI type <0.001).

CONCLUSIONS - SMI is associated with an increased risk of HF. Future research is needed to examine the cost effectiveness of screening for SMI as part of HF risk assessment, and to identify preventive therapies to improve the risk of HF among patients with SMI.


Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.