CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension Long-Term Outcomes of Patients With Mediastinal Radiation–Associated Coronary Artery Disease Undergoing Coronary Revascularization With Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure Results From the CABANA Trial The Art of SAPIEN 3 Transcatheter Mitral Valve Replacement in Valve-in-Ring and Valve-in-Mitral-Annular-Calcification Procedures Evolving insights into the role of local shear stress in late stent failure from neoatherosclerosis formation and plaque destabilization 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee Does pulsed field ablation regress over time? A quantitative temporal analysis of pulmonary vein isolation Thirty-Day Outcomes Following Transfemoral Transseptal Transcatheter Mitral Valve Replacement: Intrepid TMVR Early Feasibility Study Results Functional Mitral Regurgitation Outcome and Grading in Heart Failure With Reduced Ejection Fraction 2015 ACC/HRS/SCAI Left Atrial Appendage Occlusion Device Societal Overview

Original Research2017 May 11;376(19):1824-1834.

JOURNAL:N Engl J Med. Article Link

Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

Davies JE, Sen S, Dehbi HM et al. Keywords: iFR; FFR; stable angina; ACS; coronary-artery stenosis; non inferiority; MACE

ABSTRACT



BACKGROUND - Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR.


METHODS - We randomly assigned 2492 patients with coronary artery disease, in a 1:1 ratio, to undergo either iFR-guided or FFR-guided coronary revascularization. The primary end point was the 1-year risk of major adverse cardiac events, which were a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization. The trial was designed to show the noninferiority of iFR to FFR, with a margin of 3.4 percentage points for the difference in risk.

RESULTS - At 1 year, the primary end point had occurred in 78 of 1148 patients (6.8%) in the iFR group and in 83 of 1182 patients (7.0%) in the FFR group (difference in risk, -0.2 percentage points; 95% confidence interval [CI], -2.3 to 1.8; P<0.001 for noninferiority; hazard ratio, 0.95; 95% CI, 0.68 to 1.33; P=0.78). The risk of each component of the primary end point and of death from cardiovascular or noncardiovascular causes did not differ significantly between the groups. The number of patients who had adverse procedural symptoms and clinical signs was significantly lower in the iFR group than in the FFR group (39 patients [3.1%] vs. 385 patients [30.8%], P<0.001), and the median procedural time was significantly shorter (40.5 minutes vs. 45.0 minutes, P=0.001).

CONCLUSIONS - Coronary revascularization guided by iFR was noninferior to revascularization guided by FFR with respect to the risk of major adverse cardiac events at 1 year. The rate of adverse procedural signs and symptoms was lower and the procedural time was shorter with iFR than with FFR. (Funded by Philips Volcano; DEFINE-FLAIR ClinicalTrials.gov number, NCT02053038 .).