CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction Recommendations for Institutions Transitioning to High-Sensitivity Troponin Testing JACC Scientific Expert Panel Optimal medical therapy vs. coronary revascularization for patients presenting with chronic total occlusion: A meta-analysis of randomized controlled trials and propensity score adjusted studies Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction 中国肺高血压诊断和治疗指南2018 Comparison in prevalence, predictors, and clinical outcome of VSR versus FWR after acute myocardial infarction: The prospective, multicenter registry MOODY trial-heart rupture analysis Prognostic Value of the Residual SYNTAX Score After Functionally Complete Revascularization in ACS Radial versus femoral access and bivalirudin versus unfractionated heparin in invasively managed patients with acute coronary syndrome (MATRIX): final 1-year results of a multicentre, randomised controlled trial Rotational atherectomy and new-generation drug-eluting stent implantation Diagnosis and Prognosis of Coronary Artery Disease with SPECT and PET

EditorialOctober 2017, Volume 10, Issue 10

JOURNAL:Circ Cardiovasc Imaging. Article Link

High-Risk Coronary Atherosclerosis Is It the Plaque Burden, the Calcium, the Lipid, or Something Else?

Akiko Maehara, Gregg W. Stone Keywords: calcium death, sudden, cardiac, humans risk factors

ABSTRACT

Cardiac death and myocardial infarction usually result from thrombotic occlusion of a coronary artery with underlying atherosclerotic plaque. Histologically, most underlying plaques that have resulted in sudden cardiac death or myocardial infarction because of coronary thrombosis (vulnerable plaque) are ruptured thin-cap fibroatheromas with large plaque burden and a lipid-rich necrotic core. Second most common are erosions of proteoglycan-rich plaques with thrombosis, despite an intact fibrous cap. The extent that macroscopic or microscopic calcification contributes to plaque instability and thrombosis is controversial. Both fibroatheromas and erosion-prone plaques may be calcified and, occasionally, an isolated calcified nodule has been associated with coronary thrombosis. Using noninvasive and invasive imaging techniques, new in vivo insights into the role of calcification in patient and plaque vulnerability are emerging. The computed tomography (CT)-derived coronary artery calcium score (CACS) accounts for the area and the maximum density of each detected calcium deposit in the entire coronary tree and has proven useful in predicting future cardiovascular events in asymptomatic patients at intermediate risk. CT angiography has demonstrated that hypolucent plaques with positive remodeling or a napkin-ring sign predict future cardiac death, myocardial infarction, or acute coronary syndromes (ACS; patient-level analysis). Finally, prospective intravascular ultrasound (IVUS) studies have shown that a large plaque burden, small minimal lumen area (MLA), and composition consistent with a thin-cap fibroatheroma by radiofrequency analysis identifies those plaques that are likely to cause future adverse cardiovascular events (lesion-level analysis). In this regard, coronary calcification has been correlated with plaque burden but not luminal stenosis. Reconciling these differences, especially the apparent discordance between plaque burden, coronary calcium, and lipid as risk factors is a matter of importance.