CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Active factor XI is associated with the risk of cardiovascular events in stable coronary artery disease patients Long-Term Outcomes of Different Two-Stent Techniques With Second-Generation Drug-Eluting Stents for Unprotected Left Main Bifurcation Disease: Insights From the FAILS-2 Study Machine Learning Using CT-FFR Predicts Proximal Atherosclerotic Plaque Formation Associated With LAD Myocardial Bridging Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update Left main coronary angioplasty: early and late results of 127 acute and elective procedures New Evidence Supporting a Novel Conceptual Framework for Distinguishing Proportionate and Disproportionate Functional Mitral Regurgitation Comparative efficacy of two paclitaxel-coated balloons with different excipient coatings in patients with coronary in-stent restenosis: A pooled analysis of the Intracoronary Stenting and Angiographic Results: Optimizing Treatment of Drug Eluting Stent In-Stent Restenosis 3 and 4 trials Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification Long-term safety and effectiveness of unprotected left main coronary stenting with drug-eluting stents compared with bare-metal stents

Original Research2011 Jan;6(6):768-72.

JOURNAL:EuroIntervention. Article Link

Assessment of the coronary calcification by optical coherence tomography

Kume T, Okura H, Kawamoto T et al. Keywords: coronary artery disease; IVUS; OCT

ABSTRACT

AIMS - Optical coherence tomography (OCT) can delineate calcified plaque without artefacts. The aim of this study was to evaluate the ability of OCT to quantify calcified plaque in ex vivo human coronary arteries.

METHODS AND RESULTS - Ninety-one coronary segments from 33 consecutive human cadavers were examined. By intravascular ultrasound (IVUS), 32 superficial calcified plaques, defined as the leading edge of the acoustic shadowing appears within the most shallow 50% of the plaque plus media thickness, were selected and compared with corresponding OCT and histological examinations. The area of calcification was measured by planimetry. IVUS significantly underestimated the area of calcification compared with histological examination (y = 0.39x + 0.14, r = 0.78, p < 0.001). Although OCT slightly underestimated the area of calcification (y = 0.67x + 0.53, r = 0.84, p < 0.001), it showed a better correlation with histological examination than IVUS.

CONCLUSIONS - Both OCT and IVUS underestimated the area of calcification, but OCT estimates of the area of calcification were more accurate than those estimated by IVUS. Thus, OCT may be a more useful clinical tool to quantify calcified plaque.