CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Joint consensus on the use of OCT in coronary bifurcation lesions by the European and Japanese bifurcation clubs Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial A new optical coherence tomography-based calcium scoring system to predict stent underexpansion Myocardial Blood Flow and Coronary Flow Reserve During 3 Years Following Bioresorbable Vascular Scaffold Versus Metallic Drug-Eluting Stent Implantation: The VANISH Trial Coronary Flow Reserve in the Instantaneous Wave-Free Ratio/Fractional Flow Reserve Era: Too Valuable to Be Neglected The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics Therapeutic efficacy of paclitaxel-coated balloon for de novo coronary lesions with diameters larger than 2.8 mm Coronary fractional flow reserve in bifurcation stenoses: what have we learned?

Original Research2011 Jan;6(6):768-72.

JOURNAL:EuroIntervention. Article Link

Assessment of the coronary calcification by optical coherence tomography

Kume T, Okura H, Kawamoto T et al. Keywords: coronary artery disease; IVUS; OCT

ABSTRACT

AIMS - Optical coherence tomography (OCT) can delineate calcified plaque without artefacts. The aim of this study was to evaluate the ability of OCT to quantify calcified plaque in ex vivo human coronary arteries.

METHODS AND RESULTS - Ninety-one coronary segments from 33 consecutive human cadavers were examined. By intravascular ultrasound (IVUS), 32 superficial calcified plaques, defined as the leading edge of the acoustic shadowing appears within the most shallow 50% of the plaque plus media thickness, were selected and compared with corresponding OCT and histological examinations. The area of calcification was measured by planimetry. IVUS significantly underestimated the area of calcification compared with histological examination (y = 0.39x + 0.14, r = 0.78, p < 0.001). Although OCT slightly underestimated the area of calcification (y = 0.67x + 0.53, r = 0.84, p < 0.001), it showed a better correlation with histological examination than IVUS.

CONCLUSIONS - Both OCT and IVUS underestimated the area of calcification, but OCT estimates of the area of calcification were more accurate than those estimated by IVUS. Thus, OCT may be a more useful clinical tool to quantify calcified plaque.