CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Italian Society of Interventional Cardiology (GIse) Registry Of Transcatheter Treatment of Mitral Valve RegurgitaTiOn (GIOTTO): Impact of Valve Disease Etiology and Residual Mitral Regurgitation after MitraClip Implantation 3-Year Clinical Follow-Up of the RIBS IV Clinical Trial A Prospective Randomized Study of Drug-Eluting Balloons Versus Everolimus-Eluting Stents in Patients With In-Stent Restenosis in Coronary Arteries Previously Treated With Drug-Eluting Stents Long-term clinical outcomes of permanent polymer everolimus-eluting stent implantation following rotational atherectomy for severely calcified de novo coronary lesions: Results of a 22-center study (Tokyo-MD PCI Study) Two-year outcomes after treatment of severely calcified coronary lesions with the orbital atherectomy system and the impact of stent types: Insight from the ORBIT II trial Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial Transcatheter Interventions for Mitral Regurgitation: Multimodality Imaging for Patient Selection and Procedural Guidance Clinical Characteristics and Long-Term Outcomes of Rotational Atherectomy-J2T Multicenter Registry The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension Coronary Calcification and Long-Term Outcomes According to Drug-Eluting Stent Generation Percutaneous left atrial appendage occlusion: the Munich consensus document on definitions, endpoints, and data collection requirements for clinical studies

Letter2015 Oct;8(10):1228-9.

JOURNAL:JACC Cardiovasc Imaging. Article Link

Superficial Calcium Fracture After PCI as Assessed by OCT

Kubo T, Shimamura K, Ino Y et al. Keywords: calcium fracture; stent underexpansion; OCT

ABSTRACT


Heavily calcified lesions in coronary arteries have been known to cause stent underexpansion, which increases the risk of in-stent restenosis. Plaque modification before stent implantation is considered to be the key for treatment of calcified lesions. We hypothesized that calcium fracture by percutaneous coronary intervention (PCI) might be associated with adequate stent expansion and favorable late outcome.


From the coronary catheterization registry of Wakayama Medical University between February 1, 2010 and August 31, 2013, we retrospectively selected 61 patients with chronic stable angina who had a heavily calcified culprit lesion on coronary angiography. The heavily calcified lesion on coronary angiography was identified by radiopacities noted without cardiac motion before contrast injection, generally compromising both sides of the arterial lumen. Everolimus-eluting stent was used for PCI. PCI procedures including stent size, pre- and post-dilation, and inflation pressure were determined by each physician. Optical coherence tomography (OCT) was performed before and immediately after PCI. Maximal calcium thickness, maximal calcium arc, and maximal calcium length were measured on each candidate frame selected by visual screening in the OCT images before PCI. Calcium fracture and stent expansion were assessed in the OCT images immediately after PCI. Calcium fracture was characterized by a gap of calcium and direct exposure of calcium to the lumen at the gap. The calcium fracture thickness was measured at the edge of the fracture. The minimal stent area was measured on a candidate frame selected by visual screening. Stent expansion index was calculated as the minimal stent area divided by the average of the proximal and distal reference lumen area. Scheduled follow-up angiography was conducted 10 months after PCI.