CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound A systematic review of factors predicting door to balloon time in ST-segment elevation myocardial infarction treated with percutaneous intervention Biological Phenotypes of Heart Failure With Preserved Ejection Fraction Correlation and prognostic role of neutrophil to lymphocyte ratio and SYNTAX score in patients with acute myocardial infarction treated with percutaneous coronary intervention: A six-year experience Outcomes in Patients Treated With Thin-Strut, Very Thin-Strut, or Ultrathin-Strut Drug-Eluting Stents in Small Coronary Vessels: A Prespecified Analysis of the Randomized BIO-RESORT Trial Pharmacoinvasive and Primary Percutaneous Coronary Intervention Strategies in ST-Elevation Myocardial Infarction (from the Mayo Clinic STEMI Network) Symptom onset-to-balloon time and mortality in the first seven years after STEMI treated with primary percutaneous coronary intervention Oxygen Therapy in Suspected Acute Myocardial Infarction Lower Risk of Heart Failure and Death in Patients Initiated on SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study Bleeding-Related Deaths in Relation to the Duration of Dual-Antiplatelet Therapy After Coronary Stenting

Original Research2011 Aug;32(16):2059-66.

JOURNAL:Eur Heart J. Article Link

Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis

Hong YJ, Jeong MH, Choi YH et al. Keywords: coronary disease, stents, plaque, ultrasonics

ABSTRACT


AIMS We used virtual histology-intravascular ultrasound (VH-IVUS) to evaluate the relation between coronary plaque characteristics and no-reflow in acute coronary syndrome (ACS) patients.


METHODS AND RESULTS - A total of 190 consecutive ACS patients were imaged using VH-IVUS and analysed retrospectively. Angiographic no-reflow was defined as TIMI flow grade 0, 1, and 2 after stenting. Virtual histology-intravascular ultrasound classified the colour-coded tissue into four major components: fibrotic, fibro-fatty, dense calcium, and necrotic core (NC). Thin-cap fibroatheroma (TCFA) was defined as focal, NC-rich (≥10% of the cross-sectional area) plaques being in contact with the lumen in a plaque burden≥40%. Of the 190 patients studied at pre-stenting, no-reflow was observed in 24 patients (12.6%) at post-stenting. The absolute and %NC areas at the minimum lumen sites (1.6±1.2 vs. 0.9±0.8 mm2, P<0.001, and 24.5±14.3 vs. 16.1±10.6%, P=0.001, respectively) and the absolute and %NC volumes (30±24 vs. 16±17 mm3, P=0.001, and 22±11 vs. 14±8%, P<0.001, respectively) were significantly greater, and the presence of at least one TCFA and multiple TCFAs within culprit lesions (71 vs. 36%, P=0.001, and 38 vs. 15%, P=0.005, respectively) was significantly more common in the no-reflow group compared with the normal-reflow group. In the multivariable analysis, %NC volume was the only independent predictor of no-reflow (odds ratio=1.126; 95% CI 1.045-1.214, P=0.002).

CONCLUSION - In ACS patients, post-stenting no-reflow is associated with plaque components defined by VH-IVUS analysis with larger NC and more TCFAs.