CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Increased Risk of Valvular Heart Disease in Systemic Sclerosis: An Underrecognized Cardiac Complication Aspirin with or without Clopidogrel after Transcatheter Aortic-Valve Implantation Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis Intravascular Ultrasound and Angioscopy Assessment of Coronary Plaque Components in Chronic Totally Occluded Lesions Effect of Evolocumab on Complex Coronary Disease Requiring Revascularization A new strategy for discontinuation of dual antiplatelet therapy: the RESET Trial (REal Safety and Efficacy of 3-month dual antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation) Identifying coronary artery disease patients at risk for sudden and/or arrhythmic death: remaining limitations of the electrocardiogram Transcatheter Aortic Valve Replacement in Low-risk Patients With Bicuspid Aortic Valve Stenosis Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions

Clinical TrialVolume 11, Issue 10, May 2018

JOURNAL:JACC Cardiovasc Interv. Article Link

Comparison of a Novel Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent 5-Year Outcomes of the Randomized BIOFLOW-II Trial

T Lefèvre, M Haude, FJ Neumann et al. Keywords: biodegradable polymer; coronary artery disease; drug-eluting stent(s); sirolimus

ABSTRACT


OBJECTIVES - The authors aimed to compare long-term data of an ultrathin cobalt-chromium stent with passive silicon carbide coating and an active biodegradable polymer that releases sirolimus (O-SES) (Orsiro, BIOTRONIK, Bülach, Switzerland) with the durable polymer-based Xience Prime everolimus-eluting stent (X-EES) (Abbott Vascular, Santa Clara, California).


BACKGOURND - Biodegradable polymer stents have been developed aiming to overcome long-term detrimental effects of durable polymer stents, ultimately leaving a bare-metal stent in the vessel.

METHODS - This multicenter, assessor-blinded trial randomized 452 patients with 505 lesions to either O-SES or X-EES in a 2:1 fashion. Endpoints at 5 years were target lesion failure (TLF), its components, and stent thrombosis.

RESULTS - TLF occurred in 10.4% (n = 30) of O-SES patients versus 12.7% (n = 19) of X-EES patients (p = 0.473), overall stent thrombosis occurred in 0.7% (n = 2) versus 2.8% (n = 4) (p = 0.088), and definite stent thrombosis in 0% versus 0.7% (n = 1) (p = 0.341). Post hoc analysis was performed in diabetic patients (n = 128) and vessels ≤2.75 mm (n = 259). In diabetic patients, the O-SES group had numerically more target lesion revascularizations (13.5% vs. 4.5%; p = 0.138), but fewer cardiac deaths (1.3% vs. 6.9%; p = 0.089) and stent thrombosis (0% vs. 6.9%; p = 0.039). In small vessels, the O-SES group had a significantly lower 5-year mortality (3.7% vs. 11.3%; p = 0.022).

CONCLUSIONS - At 5 years, the biodegradable polymer O-SES demonstrated low TLF rates comparable to the durable polymer X-EES, confirming its long-term safety and performance. Particularly encouraging is the absence of definite stent thrombosis.