CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Timing of Oral P2Y12 Inhibitor Administration in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome Rotational atherectomy and new-generation drug-eluting stent implantation High-Sensitivity Troponin and The Application of Risk Stratification Thresholds in Patients with Suspected Acute Coronary Syndrome Open sesame technique in percutaneous coronary intervention for ST-elevation myocardial infarction Antithrombotic Therapy in Patients With Atrial Fibrillation and Acute Coronary Syndrome Stent Thrombosis Risk Over Time on the Basis of Clinical Presentation and Platelet Reactivity: Analysis From ADAPT-DES 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Step-by-step manual for planning and performing bifurcation PCI: a resource-tailored approach Clinical and Angiographic Features of Patients With Out-of-Hospital Cardiac Arrest and Acute Myocardial Infarction Red Cell Distribution Width in Patients with Diabetes and Myocardial Infarction: an analysis from the EXAMINE trial

Review Article2018 Jun 25.[Epub ahead of print]

JOURNAL:Curr Pharm Des. Article Link

Coronary Microcirculation in Ischemic Heart Disease

Pries AR, Kuebler WM, Habazettl H. Keywords: Angioadaptation; Heterogeneity; Inflammation; Leucocyte-Endothelium Interaction; Microvessels; vascular Permeability

ABSTRACT


BACKGROUND - Ischemic heart disease has long been considered to be exlusively caused by stenosis or occlusion. However, the coronary microcirculation too may play an important role in ischemic conditions. Also, the crucial role of microvessels in not only regulating blood flow on a local level but also mediating vascular permeability or inflammatory responses has been recognized.


OBJECTIVE - To review important physiological and pathophysiological mechanisms of coronary microcirculatory control with focus on heterogeneity of local perfusion, microvascular permeability and inflammation.

METHOD - Selective research of the literature.

RESULTS - Heterogeneity is a characteristic of microvascular networks and affects structural and functional parameters such as vessel diameter, length, and connection pattern, flow velocity, wall shear stress, and oxygenation. The networks are optimized to meet the metabolic demand of all tissue compartments. This requires continuous vascular adaptation regulated by local hemodynamic and metabolic stimuli. Compromising this regulation results in functional arterio-venous shunting and tissue areas with either hyperperfusion or hypoxia in close proximity. In ischemia-reperfusion, increased microvascular permeability may aggravate tissue hypoxia by increasing extravascular pressure and seems to contribute to adverse myocardial remodeling. Transendothelial transport mechanisms and deterioration of the endothelial glycocalyx seem to be major contributors to tissue edema. Also in the context of ischemia-reperfusion, an inflammatory response mediated by venular endothelium expressing specific adhesion molecules contributes to tissue injury. However, anti-inflammatory therapies failed in clinical studies and a multi-targeted approach for cardiac protection has been demanded.

CONCLUSION - Disturbances of the coronary microcirculation are involved in different pathophysiological aspects of reperfusion injury.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.