CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

A Meta-Analysis of Contemporary Lesion Modification Strategies During Percutaneous Coronary Intervention in 244,795 Patients From 22 Studies Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention An International Consensus Paper Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond Validation of High-Risk Features for Stent-Related Ischemic Events as Endorsed by the 2017 DAPT Guidelines Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study No causal effects of plasma homocysteine levels on the risk of coronary heart disease or acute myocardial infarction: A Mendelian randomization study Application of High-Sensitivity Troponin in Suspected Myocardial Infarction Ejection Fraction Pros and Cons: JACC State-of-the-Art Review Shock Team Approach in Refractory Cardiogenic Shock Requiring Short-Term Mechanical Circulatory Support: A Proof of Concept Open sesame technique in percutaneous coronary intervention for ST-elevation myocardial infarction

Review Article2018 Jun 25.[Epub ahead of print]

JOURNAL:Curr Pharm Des. Article Link

Coronary Microcirculation in Ischemic Heart Disease

Pries AR, Kuebler WM, Habazettl H. Keywords: Angioadaptation; Heterogeneity; Inflammation; Leucocyte-Endothelium Interaction; Microvessels; vascular Permeability

ABSTRACT


BACKGROUND - Ischemic heart disease has long been considered to be exlusively caused by stenosis or occlusion. However, the coronary microcirculation too may play an important role in ischemic conditions. Also, the crucial role of microvessels in not only regulating blood flow on a local level but also mediating vascular permeability or inflammatory responses has been recognized.


OBJECTIVE - To review important physiological and pathophysiological mechanisms of coronary microcirculatory control with focus on heterogeneity of local perfusion, microvascular permeability and inflammation.

METHOD - Selective research of the literature.

RESULTS - Heterogeneity is a characteristic of microvascular networks and affects structural and functional parameters such as vessel diameter, length, and connection pattern, flow velocity, wall shear stress, and oxygenation. The networks are optimized to meet the metabolic demand of all tissue compartments. This requires continuous vascular adaptation regulated by local hemodynamic and metabolic stimuli. Compromising this regulation results in functional arterio-venous shunting and tissue areas with either hyperperfusion or hypoxia in close proximity. In ischemia-reperfusion, increased microvascular permeability may aggravate tissue hypoxia by increasing extravascular pressure and seems to contribute to adverse myocardial remodeling. Transendothelial transport mechanisms and deterioration of the endothelial glycocalyx seem to be major contributors to tissue edema. Also in the context of ischemia-reperfusion, an inflammatory response mediated by venular endothelium expressing specific adhesion molecules contributes to tissue injury. However, anti-inflammatory therapies failed in clinical studies and a multi-targeted approach for cardiac protection has been demanded.

CONCLUSION - Disturbances of the coronary microcirculation are involved in different pathophysiological aspects of reperfusion injury.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.