CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Successful Treatment of Unprotected Left Main Coronary Bifurcation Lesion Using Minimum Contrast Volume with Intravascular Ultrasound Guidance Astro-CHARM, the First 10-year ASCVD Risk Estimator Incorporating Coronary Calcium Improving the Use of Primary Prevention Implantable Cardioverter-Defibrillators Therapy With Validated Patient-Centric Risk Estimates Mortality Following Cardiovascular and Bleeding Events Occurring Beyond 1 Year After Coronary Stenting - A Secondary Analysis of the Dual Antiplatelet Therapy (DAPT) Study Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study Intravascular ultrasound guidance in drug-eluting stents implantation: a meta-analysis and trial sequential analysis of randomized controlled trials Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials Intracoronary Optical Coherence Tomography 2018: Current Status and Future Directions Intravascular ultrasound-guided percutaneous coronary intervention in left main coronary bifurcation lesions: a review Prognostic impact of baseline glucose levels in acute myocardial infarction complicated by cardiogenic shock-a substudy of the IABP-SHOCK II-trial

Review Article2018 Jun 25.[Epub ahead of print]

JOURNAL:Curr Pharm Des. Article Link

Coronary Microcirculation in Ischemic Heart Disease

Pries AR, Kuebler WM, Habazettl H. Keywords: Angioadaptation; Heterogeneity; Inflammation; Leucocyte-Endothelium Interaction; Microvessels; vascular Permeability

ABSTRACT


BACKGROUND - Ischemic heart disease has long been considered to be exlusively caused by stenosis or occlusion. However, the coronary microcirculation too may play an important role in ischemic conditions. Also, the crucial role of microvessels in not only regulating blood flow on a local level but also mediating vascular permeability or inflammatory responses has been recognized.


OBJECTIVE - To review important physiological and pathophysiological mechanisms of coronary microcirculatory control with focus on heterogeneity of local perfusion, microvascular permeability and inflammation.

METHOD - Selective research of the literature.

RESULTS - Heterogeneity is a characteristic of microvascular networks and affects structural and functional parameters such as vessel diameter, length, and connection pattern, flow velocity, wall shear stress, and oxygenation. The networks are optimized to meet the metabolic demand of all tissue compartments. This requires continuous vascular adaptation regulated by local hemodynamic and metabolic stimuli. Compromising this regulation results in functional arterio-venous shunting and tissue areas with either hyperperfusion or hypoxia in close proximity. In ischemia-reperfusion, increased microvascular permeability may aggravate tissue hypoxia by increasing extravascular pressure and seems to contribute to adverse myocardial remodeling. Transendothelial transport mechanisms and deterioration of the endothelial glycocalyx seem to be major contributors to tissue edema. Also in the context of ischemia-reperfusion, an inflammatory response mediated by venular endothelium expressing specific adhesion molecules contributes to tissue injury. However, anti-inflammatory therapies failed in clinical studies and a multi-targeted approach for cardiac protection has been demanded.

CONCLUSION - Disturbances of the coronary microcirculation are involved in different pathophysiological aspects of reperfusion injury.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.