CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial Syncope After Percutaneous Coronary Intervention Cardiovascular Toxicity in Cancer Survivors: Current Guidelines and Future Directions The Impact of Proximal Vessel Tortuosity on the Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From a Contemporary Multicenter Registry 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Ca Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO Trial The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights Comparison of Inhospital Mortality and Frequency of Coronary Angiography on Weekend Versus Weekday Admissions in Patients With Non-ST-Segment Elevation Acute Myocardial Infarction The year in cardiovascular medicine 2020: interventional cardiology

Clinical Trial2018 Jul 17.[Epub ahead of print]

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression

Bourantas CV, Ramasamy A, Karagiannis A et al. Keywords: vulnerable plaque , shear stress , IVUS

ABSTRACT


AIMS - To examine the efficacy of angiography derived endothelial shear stress (ESS) in predicting atherosclerotic disease progression.


METHODS AND RESULTS - Thirty-five patients admitted with ST-elevation myocardial infarction that had three-vessel intravascular ultrasound (IVUS) immediately after revascularization and at 13 months follow-up were included. Three dimensional (3D) reconstruction of the non-culprit vessels were performed using (i) quantitative coronary angiography (QCA) and (ii) methodology involving fusion of IVUS and biplane angiography. In both models, blood flow simulation was performed and the minimum predominant ESS was estimated in 3 mm segments. Baseline plaque characteristics and ESS were used to identify predictors of atherosclerotic disease progression defied as plaque area increase and lumen reduction at follow-up. Fifty-four vessels were included in the final analysis. A moderate correlation was noted between ESS estimated in the 3D QCA and the IVUS-derived models (r = 0.588, P < 0.001); 3D QCA accurately identified segments exposed to low (<1 Pa) ESS in the IVUS-based reconstructions (AUC: 0.793, P < 0.001). Low 3D QCA-derived ESS (<1.75 Pa) was associated with an increase in plaque area, burden, and necrotic core at follow-up. In multivariate analysis, low ESS estimated either in 3D QCA [odds ratio (OR): 2.07, 95% confidence interval (CI): 1.17-3.67; P = 0.012) or in IVUS (<1 Pa; OR: 2.23, 95% CI: 1.23-4.03; P = 0.008) models, and plaque burden were independent predictors of atherosclerotic disease progression; 3D QCA and IVUS-derived models had a similar accuracy in predicting disease progression (AUC: 0.826 vs. 0.827, P = 0.907).

CONCLUSIONS - 3D QCA-derived ESS can predict disease progression. Further research is required to examine its value in detecting vulnerable plaques.