CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

AIM2-driven inflammasome activation in heart failure Incidence, Predictors, and Outcomes of In-Hospital Percutaneous Coronary Intervention Following Coronary Artery Bypass Grafting 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia Rare Genetic Variants Associated With Sudden Cardiac Death in Adults Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database Impact of Optimal Medical Therapy on 10-Year Mortality After Coronary Revascularization Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation The mSToPS Randomized Clinical Trial Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial

Clinical Trial2018 Jul 17.[Epub ahead of print]

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression

Bourantas CV, Ramasamy A, Karagiannis A et al. Keywords: vulnerable plaque , shear stress , IVUS

ABSTRACT


AIMS - To examine the efficacy of angiography derived endothelial shear stress (ESS) in predicting atherosclerotic disease progression.


METHODS AND RESULTS - Thirty-five patients admitted with ST-elevation myocardial infarction that had three-vessel intravascular ultrasound (IVUS) immediately after revascularization and at 13 months follow-up were included. Three dimensional (3D) reconstruction of the non-culprit vessels were performed using (i) quantitative coronary angiography (QCA) and (ii) methodology involving fusion of IVUS and biplane angiography. In both models, blood flow simulation was performed and the minimum predominant ESS was estimated in 3 mm segments. Baseline plaque characteristics and ESS were used to identify predictors of atherosclerotic disease progression defied as plaque area increase and lumen reduction at follow-up. Fifty-four vessels were included in the final analysis. A moderate correlation was noted between ESS estimated in the 3D QCA and the IVUS-derived models (r = 0.588, P < 0.001); 3D QCA accurately identified segments exposed to low (<1 Pa) ESS in the IVUS-based reconstructions (AUC: 0.793, P < 0.001). Low 3D QCA-derived ESS (<1.75 Pa) was associated with an increase in plaque area, burden, and necrotic core at follow-up. In multivariate analysis, low ESS estimated either in 3D QCA [odds ratio (OR): 2.07, 95% confidence interval (CI): 1.17-3.67; P = 0.012) or in IVUS (<1 Pa; OR: 2.23, 95% CI: 1.23-4.03; P = 0.008) models, and plaque burden were independent predictors of atherosclerotic disease progression; 3D QCA and IVUS-derived models had a similar accuracy in predicting disease progression (AUC: 0.826 vs. 0.827, P = 0.907).

CONCLUSIONS - 3D QCA-derived ESS can predict disease progression. Further research is required to examine its value in detecting vulnerable plaques.