CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry A Case of Pulmonary Hypertension Associated with Idiopathic Hypereosinophilic Syndrome Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension Potential Mechanisms of In-stent Neointimal Atherosclerotic Plaque Formation The right ventricle in pulmonary hypertension Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry Increased pulmonary serotonin transporter in patients with chronic obstructive pulmonary disease who developed pulmonary hypertension Independent Association of Lipoprotein(a) and Coronary Artery Calcification With Atherosclerotic Cardiovascular Risk Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement

Clinical Trial2018 Jun 26. [Epub ahead of print]

JOURNAL:Eur Heart J. Article Link

Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease

Gorter TM, Obokata M, Borlaug BA et al. Keywords: Heart failure with preserved ejection fraction; Pulmonary vascular disease; Right heart catheterization; Invasive exercise haemodynamics

ABSTRACT


AIMSPulmonary hypertension (PH) and pulmonary vascular disease (PVD) are common and associated with adverse outcomes in heart failure with preserved ejection fraction (HFpEF). Little is known about the impact of PVD on the pathophysiology of exercise intolerance.


METHODS AND RESULTSHeart failure with preserved ejection fraction patients (n = 161) with elevated pulmonary capillary wedge pressure (≥15 mmHg) at rest were classified into three groups: non-PH-HFpEF (n = 21); PH but no PVD (isolated post-capillary PH, IpcPH; n = 95); and PH with PVD (combined post- and pre-capillary PH, CpcPH; n = 45). At rest, CpcPH-HFpEF patients had more right ventricular (RV) dysfunction and lower pulmonary arterial (PA) compliance compared to all other groups. While right atrial pressure (RAP) and left ventricular transmural pressure (LVTMP) were similar in HFpEF with and without PH or PVD at rest, CpcPH-HFpEF patients demonstrated greater increase in RAP, enhanced ventricular interdependence, and paradoxical reduction in LVTMP during exercise, differing from all other groups (P < 0.05). Lower PA compliance was correlated with greater increase in RAP with exercise. During exercise, CpcPH-HFpEF patients displayed an inability to enhance cardiac output, reduction in forward stroke volume, and blunted augmentation in RV systolic performance, changes that were coupled with marked limitation in aerobic capacity.

CONCLUSIONHeart failure with preserved ejection fraction patients with PVD demonstrate unique haemodynamic limitations during exercise that constrain aerobic capacity, including impaired recruitment of LV preload due to excessive right heart congestion and blunted RV systolic reserve. Interventions targeted to this distinct pathophysiology require testing in patients with HFpEF and PVD.