CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Cholesterol-Lowering Agents The Current State of Left Main Percutaneous Coronary Intervention Know Diabetes by Heart: A Partnership to Improve Cardiovascular Outcomes in Type 2 Diabetes Mellitus Impact of different final optimization techniques on long-term clinical outcomes of left main cross-over stenting Mortality Differences Associated With Treatment Responses in CANTOS and FOURIER: Insights and Implications Comparative Accuracy of Focused Cardiac Ultrasonography and Clinical Examination for Left Ventricular Dysfunction and Valvular Heart Disease: A Systematic Review and Meta-analysis Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials Chronic Kidney Disease and Coronary Artery Disease Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease Catheterization Laboratory Considerations During the Coronavirus (COVID-19) Pandemic: From the ACC’s Interventional Council and SCAI

Clinical Trial2018 Jun 26. [Epub ahead of print]

JOURNAL:Eur Heart J. Article Link

Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease

Gorter TM, Obokata M, Borlaug BA et al. Keywords: Heart failure with preserved ejection fraction; Pulmonary vascular disease; Right heart catheterization; Invasive exercise haemodynamics

ABSTRACT


AIMSPulmonary hypertension (PH) and pulmonary vascular disease (PVD) are common and associated with adverse outcomes in heart failure with preserved ejection fraction (HFpEF). Little is known about the impact of PVD on the pathophysiology of exercise intolerance.


METHODS AND RESULTSHeart failure with preserved ejection fraction patients (n = 161) with elevated pulmonary capillary wedge pressure (≥15 mmHg) at rest were classified into three groups: non-PH-HFpEF (n = 21); PH but no PVD (isolated post-capillary PH, IpcPH; n = 95); and PH with PVD (combined post- and pre-capillary PH, CpcPH; n = 45). At rest, CpcPH-HFpEF patients had more right ventricular (RV) dysfunction and lower pulmonary arterial (PA) compliance compared to all other groups. While right atrial pressure (RAP) and left ventricular transmural pressure (LVTMP) were similar in HFpEF with and without PH or PVD at rest, CpcPH-HFpEF patients demonstrated greater increase in RAP, enhanced ventricular interdependence, and paradoxical reduction in LVTMP during exercise, differing from all other groups (P < 0.05). Lower PA compliance was correlated with greater increase in RAP with exercise. During exercise, CpcPH-HFpEF patients displayed an inability to enhance cardiac output, reduction in forward stroke volume, and blunted augmentation in RV systolic performance, changes that were coupled with marked limitation in aerobic capacity.

CONCLUSIONHeart failure with preserved ejection fraction patients with PVD demonstrate unique haemodynamic limitations during exercise that constrain aerobic capacity, including impaired recruitment of LV preload due to excessive right heart congestion and blunted RV systolic reserve. Interventions targeted to this distinct pathophysiology require testing in patients with HFpEF and PVD.