CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

TAVI Represents an Anti-Inflammatory Therapy via Reduction of Shear Stress Induced, Piezo-1-Mediated Monocyte Activation Anthracycline Therapy Is Associated With Cardiomyocyte Atrophy and Preclinical Manifestations of Heart Disease Transcatheter Interventions for Mitral Regurgitation: Multimodality Imaging for Patient Selection and Procedural Guidance Closure of Iatrogenic Atrial Septal Defect Following Transcatheter Mitral Valve Repair: The Randomized MITHRAS Trial Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study Evolving understanding of the heterogeneous natural history of individual coronary artery plaques and the role of local endothelial shear stress Pathophysiology, diagnosis and new therapeutic approaches for ischemic mitral regurgitation Adaptive development of concomitant secondary mitral and tricuspid regurgitation after transcatheter aortic valve replacement

Review Article2022 May 24;S0953-6205(22)00171-6.

JOURNAL:Eur J Intern Med. Article Link

Evolving concepts in the management of antithrombotic therapy in patients undergoing transcatheter aortic valve implantation

DJ van Ginkel, WL Bor, E Fabris et al. Keywords: TAVI; antithrombotic therapy; DAPT; anticoagulation; aortic stenosis; valve disease

ABSTRACT

Thromboembolic and bleeding complications negatively impact recovery and survival after transcatheter aortic valve implantation (TAVI). Particularly, there is a considerable risk of ischaemic stroke and vascular access related bleeding, as well as spontaneous gastro-intestinal bleeding. Therefore, benefit and harm of antithrombotic therapy should be carefully balanced. This review summarizes current evidence on peri- and post-procedural antithrombotic treatment. Indeed, in recent years, the management of antithrombotic therapy after TAVI has evolved from intensive, expert opinion-based strategies, towards a deescalated, evidence-based approach. Besides per procedural administration of unfractionated heparin, this encompasses single antiplatelet therapy in patients without a concomitant indication for oral anticoagulation (OAC); and OAC monotherapy in patients with such indication, mainly being atrial fibrillation. Combination therapy should generally be avoided to reduce bleeding risk, except after recent coronary stenting where a period of dual antiplatelet therapy (aspirin plus P2Y12-inhibitor) or P2Y12-inhibitor plus OAC (in patients with an independent indication for OAC) is recommended to prevent stent thrombosis. This new paradigm in which reduced antithrombotic intensity leads to improved patient safety, without a loss of efficacy, may be particularly suitable for elderly and fragile patients. Whether this holds in upcoming populations of younger and lower-risk patients and in specific populations as patients with subclinical valve thrombosis, is yet to be proven. Finally, whether less intensive or alternative approaches should be also applied for the periprocedural management of the antithrombotic therapy, has to be determined by ongoing and future studies.