CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Large-Bore Radial Access for Complex PCI: A Flash of COLOR With Some Shades of Grey Optical coherence tomography findings: insights from the “randomised multicentre trial investigating angiographic outcomes of hybrid sirolimus-eluting stents with biodegradable polymer compared with everolimus-eluting stents with durable polymer in chronic total occlusions” (PRISON IV) trial Coronary Access After TAVR 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC) Coronary Access After TAVR With a Self-Expanding Bioprosthesis: Insights From Computed Tomography Optimal medical therapy with or without PCI for stable coronary disease The Prevalence of Myocardial Bridging Associated with Coronary Endothelial Dysfunction in Patients with Chest Pain and Non-Obstructive Coronary Artery Disease Impact of chronic obstructive pulmonary disease on prognosis after percutaneous coronary intervention and bypass surgery for left main coronary artery disease: an analysis from the EXCEL trial

Review Article2022 May 24;S0953-6205(22)00171-6.

JOURNAL:Eur J Intern Med. Article Link

Evolving concepts in the management of antithrombotic therapy in patients undergoing transcatheter aortic valve implantation

DJ van Ginkel, WL Bor, E Fabris et al. Keywords: TAVI; antithrombotic therapy; DAPT; anticoagulation; aortic stenosis; valve disease

ABSTRACT

Thromboembolic and bleeding complications negatively impact recovery and survival after transcatheter aortic valve implantation (TAVI). Particularly, there is a considerable risk of ischaemic stroke and vascular access related bleeding, as well as spontaneous gastro-intestinal bleeding. Therefore, benefit and harm of antithrombotic therapy should be carefully balanced. This review summarizes current evidence on peri- and post-procedural antithrombotic treatment. Indeed, in recent years, the management of antithrombotic therapy after TAVI has evolved from intensive, expert opinion-based strategies, towards a deescalated, evidence-based approach. Besides per procedural administration of unfractionated heparin, this encompasses single antiplatelet therapy in patients without a concomitant indication for oral anticoagulation (OAC); and OAC monotherapy in patients with such indication, mainly being atrial fibrillation. Combination therapy should generally be avoided to reduce bleeding risk, except after recent coronary stenting where a period of dual antiplatelet therapy (aspirin plus P2Y12-inhibitor) or P2Y12-inhibitor plus OAC (in patients with an independent indication for OAC) is recommended to prevent stent thrombosis. This new paradigm in which reduced antithrombotic intensity leads to improved patient safety, without a loss of efficacy, may be particularly suitable for elderly and fragile patients. Whether this holds in upcoming populations of younger and lower-risk patients and in specific populations as patients with subclinical valve thrombosis, is yet to be proven. Finally, whether less intensive or alternative approaches should be also applied for the periprocedural management of the antithrombotic therapy, has to be determined by ongoing and future studies.