CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Association of Silent Myocardial Infarction and Sudden Cardiac Death When high‐volume PCI operators in high‐volume hospitals move to lower volume hospitals—Do they still maintain high volume and quality of outcomes? Impact of Chronic Total Coronary Occlusion Location on Long-term Survival After Percutaneous Coronary Intervention Nonsystem reasons for delay in door-to-balloon time and associated in-hospital mortality: a report from the National Cardiovascular Data Registry Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk 1-Year Outcomes of Delayed Versus Immediate Intervention in Patients With Transient ST-Segment Elevation Myocardial Infarction Early Versus Standard Care Invasive Examination and Treatment of Patients with Non-ST-Segment Elevation Acute Coronary Syndrome: The VERDICT (Very EaRly vs Deferred Invasive evaluation using Computerized Tomography) - Randomized Controlled Trial SCAI Expert Consensus Statement Update on Best Practices for Transradial Angiography and Intervention

Original Research2017 Sep 12;70(11):1339-1348.

JOURNAL:J Am Coll Cardiol. Article Link

Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction

Lloyd JW, Nishimura RA, Eleid MF et al. Keywords: aortic stenosis; catheterization; low gradient; nitroprusside; pathophysiology

ABSTRACT


BACKGROUND Low-gradient severe aortic stenosis (LGSAS) with preserved ejection fraction (EF) is incompletely understood. The influence of arterial afterload and diastolic dysfunction on the hemodynamic presentation of LGSAS remains unknown.


OBJECTIVES - The authors sought to determine the acute hemodynamic response to sodium nitroprusside in LGSAS with preserved EF.


METHODS - Symptomatic patients with LGSAS and preserved EF underwent cardiac catheterization with comparison of hemodynamic measurements before and after nitroprusside.


RESULTS - Forty-one subjects (25 with low flow [LF], stroke volume index [SVI] ≤35 ml/m2, 16 with normal flow [NF]) were included. At baseline, LF patients had lower total arterial compliance (0.36 ± 0.12 ml/m2/mm Hg vs. 0.48 ± 0.16 ml/m2/mm Hg; p = 0.01) and greater effective arterial elastance (2.77 ± 0.84 mm Hg · m2/ml vs. 1.89 ± 0.82 mm Hg · m2/ml; p = 0.002). In all patients, nitroprusside reduced elastance, left ventricular filling pressures, and pulmonary artery pressures and improved compliance (p < 0.05). Aortic valve area increased to ≥1.0 cm2 in 6 LF (24%) and 4 NF (25%) subjects. Change in SVI with nitroprusside varied inversely to baseline SVI and demonstrated improvement in LF only (3 ± 6 ml/m2; p = 0.02).


CONCLUSIONS - Nitroprusside reduces afterload and left ventricular filling pressures in patients with LGSAS and preserved EF, enabling reclassification to moderate stenosis in 25% of patients. An inverse relationship between baseline SVI and change in SVI with afterload reduction was observed, suggesting that heightened sensitivity to afterload is a significant contributor to LF-LGSAS pathophysiology. These data highlight the utility of afterload reduction in the diagnostic assessment of LGSAS.