CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Left main coronary artery compression in pulmonary hypertension Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L'Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome) Treatment strategies for coronary in-stent restenosis: systematic review and hierarchical Bayesian network meta-analysis of 24 randomised trials and 4880 patients Active SB-P Versus Conventional Approach to the Protection of High-Risk Side Branches: The CIT-RESOLVE Trial Percutaneous coronary intervention for coronary bifurcation disease: 11th consensus document from the European Bifurcation Club Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys

Original Research2020 Nov 25.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Left main coronary artery compression in pulmonary hypertension

JE Labin, R Saggar, EH Yang et al. Keywords: PAH; left main coronary artery compression;

ABSTRACT

Extrinsic compression of the left main coronary artery (LMCA) by a dilated pulmonary artery (PA) in the setting of pulmonary arterial hypertension (PAH) is an increasingly recognized disease entity. LMCA compression has been associated with angina, arrhythmia, heart failure, and sudden cardiac death in patients with PAH. Recent studies suggest that at least 6% of patients with PAH have significant LMCA compression. Screening for LMCA compression can be achieved with computed coronary tomography angiography, with a particular emphasis on assessment of PA size and any associated downward displacement and reduced takeoff angle of the LMCA. Indeed, evidence of a dilated PA (>40 mm), a reduced LMCA takeoff angle (<60°), and/or LMCA stenosis on CCTA imaging should prompt further diagnostic evaluation. Coronary angiography in conjunction with intravascular imaging has proven effective in diagnosing LMCA compression and guiding subsequent treatment. While optimal medical therapy and surgical correction remain in the clinician's arsenal, percutaneous coronary intervention has emerged as an effective treatment for LMCA compression. Given the prevalence of LMCA compression, its associated morbidity, and mortality, and the wide array of successful treatment strategies, maintaining a high degree of suspicion for this condition, and understanding the potential treatment strategies is critical.